
Solutions to April 18, 2015, exam

Mixed-Signal Systems (DAT116)

Lars Svensson, Lena Peterson

April 20, 2015

The following are suggested solutions to the problems. It must be noted that other solutions may be
possible, and that approximate solutions will give at least partial credit as long as the approximations
are reasonable (just as in real life!).

1. (a) We must first estimate the magnitudes of the possible errors.

• With the 21-MHz clock, the worst-case aliased signal is at fS−fB = 21−7 = 14 MHz,
that is, at twice the highest frequency in the band of interest. A third-order anti-
aliasing filter with its cutoff frequency at the band edge will suppress the 14-MHz
signal by 3 × 6 = 18 dB, so the original 20-dB difference (100×) will be improved to
20 + 18 = 38 dB by the filter.

• For the 35-MHz clock, the worst-case aliased signal is at 35− 7 = 28 MHz, a factor of
4 above the highest frequency of interest; thus there is another 18dB of attenuation,
for a total of 36 dB. The total difference will then be 36 + 20 = 56 dB.

• The jitter error for the 35-MHz case is given by SNRji = −20 · log(∆t ·ωin) [Maloberti,
eq. 1.8]; as ωin = 2 · π · 7 · 106 ≈ 4.4 · 107, the error power will be 47.1 dB below the
signal.

So the faster clock will allow the better SNDR, despite its significant jitter. A steeper filter
would be needed for the slower clock to be preferable.

(b) The peak SNDR in the chosen case is 47.1 dB. Since (47.1 − 1.76)/6.02 = 7.5, an 8-bit
converter should be chosen in order to keep the quantization noise below the jitter noise.

(c) The sample power limit is given by a well-known equation: PS = 12 · kT · fS · 22N . With
N = 8 and T = 300, PS ≈ 1.14 · 10−7 W. A complete practical converter might need to
consume roughly 200 times that power, or 23 µW.

2. (a) The signal at the input of the quantizer can be viewed as the sum of the input signal, X,
and a filtered version of the difference of the input signal and the output signal, Y . Thus,
in the z domain with F being the filter transfer function:

Y = X + F · (X − Y ) = X + F ·X − F · Y

Rearrangement of terms gives:

STF =
Y

X
=

1 + F

1 + F

so the STF will be 1, regardless of the exact filter transfer function F . (Note that the direct
path from input to quantizer ensures there is not even a delay.)
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(b) To derive the NTF, we let X = 0; then:

Y = Q− F ·Q = Q · (1− F )

NTF =
Y

Q
= 1− F

where Q is the quantization error. Here, it actually matters what F is.

The squares in the figure each have a pole at z = 1, so at DC, so are integrators (multiply
numerator and denominator with z−1 to get the more familiar form z−1/(1 − z−1)). The
exact placement of the filter zeroes is determined by the weight coefficients and may be
calculated to be

z1,2 = 0.8187± 0.1310i

which fully determines the NTF.

(c) Maloberti’s Equation 7.10 and Figure 7.3 suggest that an SNDR of 50 dB may be reached
at an OSR of 10 with a third-order loop. (This first-order estimate disregards the influence
of the loop zeroes, which is exemplified in Figure 7.4.)

3. (a) Let

x(t) = A sinωt

and then

y(t) = x(t)− α(x(t))3 = A sinωt− αA3 sin3 ωt

Since

sin 3φ = 3 sinφ− 4 sin3 φ

we have

y(t) = A sinωt− αA3 · 1

4
(3 sinωt− sin 3ωt) = A(1− 3

4
αA2) sinωt+

1

4
αA3 sin 3ωt

As expected, the amplitude of the fundamental tone (at ω) does not follow the input
amplitude at increased A.

A 1-dB reduction corresponds to a power reduction by a factor of 10−0.1 ≈ 0.8 and an
amplitude reduction of

√
10−0.1 ≈ 0.9. Thus, the compression point is reached when

1− 3

4
αA2 = 0.9

so

A2 =
0.4

3α
or

A =

√
0.4

3α

(b) Since α = 0.1,

A2 =
0.4

3 · 0.1
=

0.4

0.3
≈ 1.33

So, the compression point is 10 · log10(1.33) ≈ 1.25 dB above the amplitude A = 1.
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(c) The intercept point is the input level when the third harmonic would have the same power
(and therefore amplitude) as the undistorted fundamental tone would have:

A =
1

4
αA3

So, with α = 0.1,

A2 =
4

α
= 40

This is 10 · log10(40) ≈ 16.0 dB above A = 1, and therefore 16.0 − 1.25 = 14.8 dB above
the compression point.

4. (a) The sample capacitance limit may be straightforwardly calculated by this formula:

CS =
12kT

V 2
FS

22N

With T = 373 K (100◦) and VFS = 1 V, CS ≈ 3.7 fF. This limit applies to the sample
capacitance, that is, to the sum of all the C/2i in the conceptual schematic (all these capac-
itances are connected in parallel when the signal is sampled!). Thus, the noise requirements
limit C to about half of this value, or 1.8 fF.

(Actually, the matching limit is much more stringent, as seen in the next subproblem;
VFS may take a different value than 1 V; and the thermal noise that limits the ENOB is
generated in the comparator input stage rather than in the sampler. . . )

(b) With the smallest capacitance at 2 fF, each of the four capacitor banks has a capacitance
of 2 ·

∑7
i=0 i = 510 fF. With differential signalling and a 1-V supply, and with resetting the

inputs before each conversion, the voltage swing across each capacitance will be at most
500 mV. The total energy expended is then 4 · 510 · 0.52 = 510 fJ.

(c) The third-least-significant capacitor is now minimum-sized, and the more-significant capac-
itors use conventional binary scaling. Thus the total capacitance is close to 1/4 of the value
for the previous case, as is the power.

One extra benefit is that the input capacitance is also reduced; in fact, the Kull converters
use no input signal buffer, which makes sense since the converter input capacitance is on
the order of that of a bonding pad (roughly 100 fF); the external circuit that drives the
pad also directly drives the converter input.


