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Exam in DAT 105 (DIT 051) Computer Architecture 
  
 
Time: August 20, 2019 14 – 18 (in SB) 
 
 
Person in charge of the exam: Per Stenström, Phone: 0730-346 340 
 
Supporting material/tools: Chalmers approved calculator. 
 
Exam Review: On September 2 10-12 after appointment with Per Stenström   
 
Grading intervals:   
 
• Fail:  Result < 24 
• Grade 3: 24 <= Result < 36 
• Grade 4: 36 <= Result < 48 
• Grade 5: 48 <= Result 
 
NOTE 1: Bonus points from Real-stuff studies and Quizzes will be added to the exam 
results for approved exams used solely for higher grades. 
 
NOTE 2: Answers must be given in English 
 
GOOD LUCK! 
Per Stenström 
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 [General disclaimer: If you feel that sufficient facts are not provided to solve a 
problem, either 1) ask the teacher when he visits the exam, or 2) make your own 
additional assumptions. Additional assumptions will be accepted if they are 
reasonable and required to solve the problem. Always make sure to motivate 
your answers.]  

 
ASSIGNMENT 1 

 
 

The tables below show the CPI assuming a single-cycle memory system (CPI0) and number 
of Misses-Per-Kilo-Instructions (MPKI) and Miss Penalties (MP) on two machines (A and B) 
with the same Instruction Set Architecture (ISA) for two single-threaded programs, P1 and 
P2, respectively, where P1 executes twice as many instructions as P2 which executes 1 million 
instructions. The operating frequencies of the two machines (A and B) are also shown. The 
miss penalty is 100 nanoseconds for all three machines.  
 

Program P1 A B 
CPI0 0.5 1.0 
MPKI 10 5 
MP 100 200 
   
Program P2 A B 
CPI0 2.0 1.5 
MPKI 5 10 
MP 200 100 

 
 

Clock freq. 
(GHz) 

 

Machine A 1 
Machine B 1.2 

 
1A) Calculate the execution times for P1 and P2 on A and B (4 points) 
 
1B) Determine which of the machines is the fastest using arithmetic means (4 points) 
 
1C) Determine which of the machines is the fastest using arithmetic means if the memory 
system is not having any (negative) impact on performance (2 points) 
 
1D) Why is geometric means of the execution time preferable over arithmetic means as a 
metric to compare performance of two machines? (2 points) 
 
 
 
 
 
 
 



 Page 3(12) 

 

ASSIGNMENT 2 
 
 
We consider in this assignment a pipeline with a 5-stage pipelined floating-point unit and a 
single-stage execution unit that executes integer, load/store and branch instructions. There are 
forwarding units from the output of each execution unit and from the memory stage.  
 

 
 
 
2A) What is the operation latency and initiation interval of a) an integer ADD b) a floating- 
point Load and c) a floating-point ADD instruction? (3 points) 
 
2B) Consider the following code: 
 
LOOP: LD F1, 0(R1) 
            ADD F4, F0, F1 
            SD F4, 0(R1) 
            ADDI R1, R1,#8 
            SUBI R3, R3,#1 
            BNE R1, R2, LOOP 
 
Construct a pipeline diagram that shows in what cycle every instruction enters a particular 
stage and use it to establish the execution time of a single iteration of the loop above.  
(3 points) 
 
2C) Now reorder instructions in a single iteration to minimize the stall cycles due to data 
hazards and establish the speedup in comparison with 2B). (3 points) 
 
 
2D) Consider again the code in Assignment 2A. Use software pipelining to statically schedule 
the code to maximize instruction-level parallelism. Show the prologue, kernel and epilogue 
code for the software pipelined loop (3 points) 
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ASSIGNMENT 3 
 

 
 

The diagram below shows a pipeline with support for Tomasulo’s algorithm. There are 
two functional units for adding floating-point numbers and a single functional unit for 
floating-point division. It takes 1 cycle to carry out an addition/subtraction and 5 cycles 
to carry out a division. 

 

 
 

 
3A) Consider the program below  
 

ADDD   F1, F2, F3  ; –O1 
DIVD    F2, F1, F2  ; –O2 
SUBD   F2, F4, F6  ; –O3 
ADDD  F4, F2, F2  ; –O4 
 

What data hazards (RAW, WAR and WAW) exist in this code sequence? (3 points) 
 
 
3B) Explain in detail what happens in each of the three pipeline stages: Issue, Execute, 
and Write result. In particular explain how data hazards are resolved and in which cycle 
each instruction in the sequence below enters the different stages by filling out a pipeline 
diagram similar to the one below for the following instruction sequence. (6 points) 

 
 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 
O1 Issue       
O2   Issue     
O3   Issue    
O4    Issue   

 
 

 
3C) Explain how a two-bit branch predictor works.  (3 points) 
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ASSIGNMENT 4 

 
 
4A)  
 
A computer architect wants to establish the relative performance between a system with a 
blocking and a non-blocking cache for the following program.  
 
TOY:  LW R1, 0(R2) 
 ADDI R2,R2,#4 
 BNE R2,R4,TOY 
 
The following holds: 

• The cache-block size is 16 bytes (four words) 
• The cache hit time is a single cycle and the miss penalty for both caches is 200 cycles. 
• CPI=1 for non-memory instructions 
• The number of MSHRs is 16 

 
Determine the number of cycles it takes to execute 16 iterations of the loop on the blocking 
and non-blocking cache. (6 points) 
 
4B)  
 
In the table below, we show MPKI (Misses-Per-Kilo-Instruction) for a number of 
organizations. The fraction of memory instructions, out of all executed instructions, is 10%. 
From the data, determine the cold miss rate, the capacity miss rate and the conflict miss rate 
for a direct-mapped cache. (3 points) 
 

Cache organization MPKI 
16-KB direct mapped cache 20 
16-KB 2-way assoc. cache 16 
16-KB fully associative cache 12 
Cache with infinite size 4 

 
 
 
4C) How does software prefetching work? (3 points) 
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ASSIGNMENT 5 
 

 
5A) Consider a multicore system comprising a number of processors (cores) on a chip that 
are connected to a single-level private cache. The private caches use the write-through write 
policy. Xi=Ri and Xi=Wi, mean a read and a write request to the same address from processor 
i, respectively, where Wi=C means that the value C is written by processor i. Now consider 
the following access sequence: 
R1 
R2 
W1=0 
W2=1 
W1=3 
W2=4 
R1 
R2 
What is returned by the second read operation from processor 1 and what is the reason that 
the correct value is not returned given the cache write policy assumed? How can we modify 
the cache controller to make sure that the right value is returned? 
(6 points) 
 
5B)  
Assume a write-back cache and the MSI-protocol. What bus transaction will cause a state 
transition from state S to state M and what transaction will cause a transition from state S to 
state M? (2 points) 
 
5C) Explain the concept of blocked (coarse-grain) multithreading.  Consider a five-stage 
pipeline. What additional mechanisms and pipeline stages must be added to support blocked 
multithreading? How many cycles are lost on a thread switch? (4 points) 
 

*** GOOD LUCK! *** 
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Solutions Exam 2019-08-20 
 

ASSIGNMENT 1 

 
1A)  
 
P1: 
A:  Exectime = 2 x 106 x (0.5 + 0.01 x 100) x 10-9 = 3.0 ms 
B:  Exectime = 2 x 106 x (1.0 + 0.005 x 200) x 10-9/1.2 = 3.3 ms 
 
P2: 
A:  Exectime = 1 x 106 x (2.0 + 0.005 x 200) x 10-9 = 3.0 ms 
B:  Exectime = 1 x 106 x (1.5 + 0.10 x 100) x 10-9/1.2 = 9.6 ms 
 
 
 
1B)  
 
A: (3.0 + 3.3)/2 = 3.15 ms 
B: (3.3 + 9.6)/2 = 6.5 ms 
Hence, A is fastest. 
 
1C)  
 
P1: 
A:  Exectime = 2 x 106 x 0.5 x 10-9 = 1.0 ms 
B:  Exectime = 2 x 106 x 1.0 x 10-9/1.2 = 0.61 ms 
 
P2: 
A:  Exectime = 1 x 106 x 2.0 x 10-9 = 2.0 ms 
B:  Exectime = 1 x 106 x 1.5 x 10-9/1.2 = 1.3 ms 
 
A: (1.0 + 2.0)/2 = 1.5 ms 
B: (0.61 + 1.3)/2 =0.95 ms 
 
B is now fastest 
 
1D) The geometric means tend to make the means less affected by outliers.  
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ASSIGNMENT 2 

 
 

 
2A)  
 
Operation latency: 
Integer ADD: 0 
Floating-point ADD: 4 
 
Initiation interval: 
Integer ADD: 1 
Floating-point ADD: 1 (because it is pipelined) 
 
2B)  
 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 
LD F1, 0(R1) IF ID EX ME WB        
ADD F4, F0, F1  IF ID ID EX EX EX EX EX ME WB  
SD F4, 0(R1)   IF ID ID ID ID ID ID EX ME WB 
ADDI R1, R1,#8    IF ID EX ME WB     
SUBI R3, R3,#1     IF ID EX ME WB    
BNE R1, R2, 
LOOP 

     IF ID EX ME WB   
 
 
  
 
2C) Now reorder instructions in a single iteration to minimize the stall cycles due to data 
hazards and establish the speedup in comparison with 2B). (3 points) 
 
LOOP: LD F1, 0(R1) 
            ADD F4, F0, F1 
            SD F4, 0(R1) 
            ADDI R1, R1,#8 
            SUBI R3, R3,#1 
            BNE R1, R2, LOOP 
We can move the red-marked instructions up between the ADD and the SD 
LOOP: LD F1, 0(R1) 
            ADD F4, F0, F1 
            ADDI R1, R1,#8 
            SUBI R3, R3,#1 
            SD F4, -8(R1) 
            BNE R1, R2, LOOP 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 
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LD F1, 0(R1) IF ID EX ME WB        
ADD F4, F0, F1  IF ID ID EX EX EX EX EX ME WB  
ADDI R1, R1,#8   IF ID EX ME WB      
SUBI R3, R3,#1    IF ID EX ME WB     
SD F4, 0(R1)     IF ID ID ID ID EX ME WB 
BNE R1, R2, 
LOOP 

     IF ID EX ME WB   
 
Comparing the two programs, they will execute in the same amount of time. In both cases, all 
instructions are ready in cycle 12 (C12). 
 
2D)  
 
The dependency distance between the LD and the ADD is one cycles and the dependency 
distance between the ADD and the SD is four cycles as opposed to one cycle if forwarding 
could provide the operand in the next cycle. 
 
 
We refer to the LD, the ADD and the SD as OP1, OP2 and OP3, respectively, in the software 
pipelining diagram below: 
 
 ITE1 ITE2 ITE3 ITE4 ITE5 ITE6 ITE7 ITE8 ITE9 ITE10 
C1 OP1          
C2  OP1         
C3 OP2  OP1        
C4  OP2  OP1       
C5   OP2  OP1      
C6    OP2  OP1     
C7     OP2  OP1    
C8 OP3     OP2  OP1   
C9  OP3     OP2  OP1  
C10   OP3     OP2  OP1 
C11    OP3     OP2  
C12     OP3     OP2 

 
 
Prologue: C1 – C7 
Kernel: C8 – C10  
Epilogue (portions of it): C11 – C12 
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ASSIGNMENT 3 

 
3A)  
 
RAW (pairs): (O1,O2), (O2,O4) 
WAR (pairs): (O1,O2), (O1,O3), (O3,O4) 
WAW (pairs): (O2,O3) 
3B)  

 
ADDD   F1, F2, F3  ; –O1 
DIVD    F2, F1, F2  ; –O2 
SUBD   F2, F4, F6  ; –O3 
ADDD  F4, F2, F2  ; –O4 

 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 
O1 IS EX  WR       
O2   IS EX  EX EX  EX EX WR  
O3   IS EX  WR     
O4       IS EX  WR 

 
Note that because of the RAW hazard between O2 and O4, O4 cannot start executing 
until C8. The operand from O1 is forwarded via the Common Data Bus to O2 in C3.  
The WAR and WAW hazards are eliminated through register renaming so O3 can start 
executing immediately. O4 is though delayed due to RAW w.r.t. O2 through F2. 

 
3C)  
 
A two-bit predictor encodes four states (let’s call them 1, 2, 3 and 4) with the two bits where 
the first two states predict untaken and the last two states predict taken. For as long as the 
prediction is correct it stays in a certain state. It can take up to two mispredictions for the 
prediction to change. 
 

ASSIGNMENT 4 
 

 
 
4A)  
 
Blocking cache: 
 
There will be a miss every four iterations because there are four words in a cache block and 
every word is accessed. The time to execute four iterations is: 4 x 12 x 1 + 200 cycles = 248 
cycles. Hence, 16 iterations take 4 x 248 = 992 cycles. 
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Non-blocking cache: 
 
The program will not be stalled by the cache because in 16 iterations, there are 16 loads and 
hence the 16 MSHRs are sufficient. Note that R1 is not needed and hence there is not any 
RAW hazards. Consequently, 16 iterations take 16 x 3 x 1 = 48 cycles.  
 
Speedup: 992/48 = 20! 
 
4B)  
 
In 1000 instructions there are 1000 instruction fetches and 100 memory accesses (10% of the 
instructions are memory instructions). Hence, there are in total 1100 memory accesses. The 
miss rate can now be calculated as the number of misses per thousand instructions (MPKI) 
divided by the number of memory accesses. This is calculated in the table below: 
 
 

Cache organization MPKI Miss rate 
16-KB direct mapped cache 20 0.018 
16-KB 2-way assoc. cache 16 0.015 
16-KB fully associative cache 12 0.011 
Cache with infinite size 4 0.0036 

 
Cold miss rate (miss rate for an infinite cache): 0.36% 
Capacity miss rate (miss rate for a fully assoc. cache minus cold miss rate):  
1.1%-0.36% = 0.74% 
Conflict miss rate (miss rate of direct mapped – fully assoc): 1.8% - 1.1% = 0.7% 
 
4C)  
 
The ISA comprises a prefetch instruction that like a load specifies the effective address but 
not the destination register. Hence, it just generates a memory access that brings the 
corresponding memory block into the cache. The challenge is to schedule the prefetch 
instruction at a point in time where it can deliver the data in a timely fashion in anticipation 
of a future access to memory. Often, this is part of cyclic scheduling in loops by having the 
compiler analyze the loop so that a prefetch instruction can prefetch data sufficiently ahead 
of time so that the memory access latency can be entirely hidden. 
 
 

ASSIGNMENT 5 
 

 
5A)  
 
The write policy is write-through; it updates the cache and the memory on a write. The second 
read by P1will however only see the writes from P1 and not from P2. Hence, it will return the 
value written by the second write from P1 (3). This is not the last written value in the 
sequence. It should have returned 4 – the last written value from P2.  
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5B) If a block is in the S(hared) state it means that memory is up to date. What brings that 
block into the M(odified) state is a write to the block. Then an Upgrade message will be sent 
to memory and to all other caches forcing them to invalidate the block. On a subsequent read 
miss from some other cache, a Bus read request is posted on the bus. This will be intercepted 
by the cache having the block in the M(odified) state which will respond with the block in 
what is called a Flush operation. The new state is then S(hared). 
 
 
5C) In block or coarse-grain multithreading, a switch to another thread happens when 
encountering a long-latency operation such as a cache miss. Since that is detected in the 
memory stage in a five-stage pipeline, all instructions in the stages preceding that stage must 
be flushed. A thread switch stage is added between the instruction fetch stage  
 
 
 
 
 


