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Exam in DAT 105 (DIT 051) Computer Architecture 
  
 
Time: January 19, 2019 14 – 18  
 
 
Person in charge of the exam: Per Stenström, Phone: 0730-346 340 
 
Supporting material/tools: Chalmers approved calculator. 
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Grading intervals:   
 
• Fail:  Result < 24 
• Grade 3: 24 <= Result < 36 
• Grade 4: 36 <= Result < 48 
• Grade 5: 48 <= Result 
 
NOTE 1: Bonus points from Real-stuff studies and Quizzes will be added to the exam 
results for approved exams used solely for higher grades. 
 
NOTE 2: Answers must be given in English 
 
GOOD LUCK! 
Per Stenström 
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[General disclaimer: If you feel that sufficient facts are not provided to solve a 
problem, either 1) ask the teacher when he visits the exam, or 2) make your own 
additional assumptions. Additional assumptions will be accepted if they are 
reasonable and required to solve the problem. Always make sure to motivate 
your answers.]  

 
ASSIGNMENT 1 

 
 

The tables below show the CPI assuming a single-cycle memory system (CPI0) and number 
of Misses-Per-Kilo-Instructions (MPKI) on two machines (A and B) and a reference machine 
(R) with the same Instruction Set Architecture (ISA) for two single-threaded programs, P1 
and P2, respectively, where P1 executes twice as many instructions as P2 which executes 1 
million instructions. The operating frequencies of the three machines (A, B and R) are also 
shown. The miss penalty is 100 nanoseconds for all three machines.  
 

Program P1 A B R 
CPI0 0.5 1.0 1 
MPKI 10 10 1 
    
Program P2 A B R 
CPI0 2.0 1.5 1 
MPKI 10 10 1 

 
 

Clock freq. 
(GHz) 

 

Machine A 1 
Machine B 1.2 
Machine R 1 

 
1A) Calculate the execution times for P1 and P2 on A, B and R (4 points) 
 
1B) Determine which of the machines is the fastest using geometric means (4 points) 
 
1C) Assume that 10% of the execution time of a program is spent on executing the division 
instruction. What is the speedup obtained on the entire program if an ingenious design of a 
division functional unit would result in a speedup of division instructions by a factor 1000?   
(2 points) 
 
1D) Why is arithmetic means of the execution time unreliable as a metric to compare 
performance of two machines? (2 points) 
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ASSIGNMENT 2 

 
 
We consider in this assignment a VLIW architecture that can issue two memory, two floating-
point, one integer, and one branch instruction each cycle according to the pipeline 
organization below.  There are no forwarding units. 

 
 
2A) Consider the following code: 
 
LOOP: LD F1,0(R1) 
            ADD F4, F0,F2 
            SD F4,0(R1) 
            SUBI R1,R1,#8 
            BNE R1, R2, LOOP 
 
Show how the instructions in one iteration of the loop above should be scheduled on the 
VLIW pipeline to maximize instruction level parallelism.  (2 points) 
 
2B) Consider again the code in Assignment 2A. Use loop unrolling seven times to statically 
schedule the code to maximize instruction level parallelism. (6 points) 
 
2C) Consider the following code: 
for (i = 0; i < N; i++) 
     {A[i+2] = A[i] + 2; 
       B[i] = A[i+2] + 1;} 
 
This is translates into  
Loop:  L.S F0, 0(R2)             ; –O1 

ADD.S F3, F0, F1    ; –O2 
ADD.S F4, F3, F1   ; –O3 
S.S. F3, 16(R2)         ; –O4 
S.S. F4, 0(R3)          ; –O5 
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ADDI R2,R2, 8 
ADDI R3,R3, 8 
BNE R2,R4, Loop 

 
 
Show the code for the kernel in a software pipelined version of the code that maximizes 
instruction level parallelism.  (4 points) 
 
 

ASSIGNMENT 3 
 

 
 

The diagram below shows a pipeline with support for Tomasulo’s algorithm. There are 
two functional units for adding floating-point numbers and a single functional unit for 
floating-point division. It takes 2 cycles to carry out an addition/subtraction and 5 cycles 
to carry out a division. 

 

 
 

 
3A) Explain in detail what happens in each of the three pipeline stages: Issue, Execute, 
and Write result. In particular explain how data hazards are resolved and in which cycle 
each instruction in the sequence below enters the different stages by filling out a pipeline 
diagram similar to the one below for the following instruction sequence. (6 points) 

 
ADDD   F1, F2, F3  ; –O1 
DIVD    F4, F1, F2  ; –O2 
SUBD   F2, F4, F6  ; –O3 
ADDD  F4, F1, F1  ; –O4 
 

 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 
O1 Issue       
O2   Issue     
O3   Issue    
O4    Issue   
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3B) Consider the code below as it runs on a pipeline like the one above with support for 
speculative execution. Assume that the branch instruction is predicted to NOT be taken and 
that the prediction is validated to be correct when the last instruction has been speculatively 
executed. Explain in detail how the speculative processor keeps track of the register values 
during speculative execution and after how many cycles after the branch instruction has been 
validated, all register values are available in the register file. (4 points) 

 
BNEZ    R1, LABEL 
ADDD   F1, F2, F3 
DIVD    F4, F1, F2 
SUBD   F2, F5, F6 
 

3C) Explain how a two-level branch predictor works.  (4 points) 
 

ASSIGNMENT 4 

 
 
4A) A computer architect wants to establish the relative performance between a system with 
a blocking and a non-blocking cache using software prefetching. In software prefetching, 
prefetch instructions are appropriately inserted in the code shown below. Assume that five 
instructions are executed per iteration where the CPI for each instruction is one assuming that 
it doesn’t cause a cache miss. On the other hand, if the instruction causes a cache miss, CPI 
is 100. In addition, prefetch instructions result in CPI=2. Both caches have a block size of 
four words.  
 
for (i=0; i<1000; i++) 
     C+=A[i]; 
 

• Show how the code is annotated with prefetch instructions to hide all cache misses.  
• How many MSHRs are needed to make software prefetching maximally effective? 
• How much faster does the program run on the system with a non-blocking cache using 

software prefetching?  
A convincing explanation that is easy to follow is needed for full points. (6 points) 
 
4B)  
 
In the table below, we show MPKI (Misses-Per-Kilo-Instruction) for a number of 
organizations. The fraction of memory instructions, out of all executed instructions, is 10%. 
From the data, determine the cold miss rate, the capacity miss rate and the conflict miss rate 
for a direct-mapped cache. (3 points) 
 

Cache organization MPKI 
16-KB direct mapped cache 10 
16-KB 2-way assoc. cache 8 
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16-KB fully associative cache 6 
Cache with infinite size 2 

 
 
 
4C) How does sequential prefetching work? (3 points) 
 
 

ASSIGNMENT 5 
 

 
5A) Consider a multicore system comprising a number of processors (cores) on a chip that 
are connected to a single-level private cache. The private caches use the write-through write 
policy. Xi=Ri and Xi=Wi, mean a read and a write request to the same address from processor 
i, respectively, where Wi=C means that the value C is written by processor i. Now consider 
the following access sequence: 
R1 
R2 
W1=0 
W2=1 
R1 
R2 
What is returned by the second read operation from processor 1 and what is the reason that 
the correct value is not returned given the cache write policy assumed? How can we modify 
the cache controller to make sure that the right value is returned? 
(6 points) 
 
5B)  
Assume a write-back cache and the MSI-protocol. What bus transaction will cause a state 
transition from state I to state S and what transaction will cause a transition from state S to 
state I? (2 points) 
 
5C) Explain the concept of interleaved (fine-grain) multithreading.  Consider a five-stage 
pipeline. What additional mechanisms and pipeline stages must be added to support 
interleaved multithreading? How many cycles are lost on a thread switch? (4 points) 
 

*** GOOD LUCK! *** 
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Solutions Exam 2019-01-19 
 

ASSIGNMENT 1 
 

 
 
1A) Calculate the execution times for P1 and P2 on A, B and R (4 points) 
 
Execution times P1 
 

• EA,P1 = IC x (CPI0 + MPKI x MP/103) x Tc. IC=2 x 106, CPI0=0.5, MPKI=10, 
MP=100ns/1ns=100, Tc=1ns. EA,P1= 2 x 106 x (0.5 + 10x100/103) x 1ns = 2 x 106 x 
(0.5+1) x 1 ns = 3 ms 

• EB,P1 = IC x (CPI0 + MPKI x MP/103) x Tc. IC=1 x 106, CPI0=1, MPKI=10, 
MP=100ns/0.83ns=120, Tc=0.83ns. EB,P1= 1 x 106 x (1 + 10x120/103) x 0.83ns = 1 x 
106 x (1+1.2) x 0.83 ns = 1.8 ms 

• ER,P1 = IC x (CPI0 + MPKI x MP/103) x Tc. IC=1 x 106, CPI0=1, MPKI=1, 
MP=100ns/1 ns=100, Tc=1 ns. ER,P1= 1 x 106 x (1 + 1x100/103) x 1 ns = 1 x 106 x 1.1 
x 1 ns = 1.1 ms 
 

Execution times P2 
• EA,P2 = IC x (CPI0 + MPKI x MP/103) x Tc. IC=2 x 106, CPI0=2, MPKI=10, 

MP=100ns/1ns=100, Tc=1ns. EA,P2= 2 x 106 x (2 + 10x100/103) x 1ns = 2 x 106 x 
(2+1) x 1 ns = 6 ms 

• EB,P2 = IC x (CPI0 + MPKI x MP/103) x Tc. IC=1 x 106, CPI0=1.5, MPKI=10, 
MP=100ns/0.83ns=120, Tc=0.83ns. EB,P2= 1 x 106 x (1.5 + 10x120/103) x 0.83ns = 1 
x 106 x (1.5+1.2) x 0.83 ns = 2.2 ms 

• ER,P2 = IC x (CPI0 + MPKI x MP/103) x Tc. IC=1 x 106, CPI0=1, MPKI=1, 
MP=100ns/1 ns=100, Tc=1 ns. ER,P2= 1 x 106 x (1 + 1x100/103) x 1 ns = 1 x 106 x 1.1 
x 1 ns = 1.1 ms 

 
 
 
1B) Determine which of the machines is the fastest using geometric means (4 points) 
 
Solution: 
 

• A: Speedup(P1 vs R) = 3/1.1 = 2.7. Speedup(P2 vs R) = 6/5.5 = 1.1 Geommean=(2.7 
x 1.1)1/2 = 2.5 
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• B: Speedup(P1 vs R) = 1.8/1.1 = 1.6. Speedup(P2 vs R) = 2.2/1.1 = 2 
Geommean=(2.5x 2)1/2 = 2.2 

 
Hence, A (Geommean = 2.5) is faster than B (Geommean = 2.2) 
 
1C) Assume that 10% of the execution time of a program is spent on executing the division 
instruction. What is the speedup obtained on the entire program if an ingenious design of a 
division functional unit would result in a speedup of division instructions by a factor 1000?   
(2 points) 
 
 
Speedup with enhanced functional unit: 
 
SP = 1/(0.9 + 0.1/1000) = 1.1 (about 10% faster). This is a good example of not spending 
significant engineering efforts on a rare case. 
 
1D) Why is arithmetic means of the execution time unreliable as a metric to compare 
performance of two machines? (2 points) 
 
 
Arithmetic means are sensitive to outliers. So, if one computer outperforms another one 
for nine out of ten applications but underperforms significantly for one, arithmetic 
means may suggest that the one that is performing best in most of the cases performs 
worse. 
 

ASSIGNMENT 2 

 
 
2A) Consider the following code: 
 
LOOP: LD F1,0(R1) 
            ADD F4, F0,F2 
            SD F4,0(R1) 
            SUBI R1,R1,#8 
            BNE R1, R2, LOOP 
 
Show how the instructions in one iteration of the loop above should be scheduled on the 
VLIW pipeline to maximize instruction level parallelism (ILP).  (2 points) 
 
Solution: 
 
LD/ST LD/ST FPop1 FPop2 INT BRANCH 
LD F1,0(R1)      
  ADD F4, F0,F2    
      
SD F4,0(R1)    SUBI R1,R1,#8  
     BNE R1, R2, LOOP 
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Not much ILP is exploited. 
 
2B) Consider again the code in Assignment 2A. Use loop unrolling seven times to statically 
schedule the code to maximize instruction level parallelism. (6 points) 
 
See pipeline diagram of Figure 3.19 in the textbook, on page 144 
 
2C) Consider the following code: 
for (i = 0; i < N; i++) 
     {A[i+2] = A[i] + 2; 
       B[i] = A[i+2] + 1;} 
 
 
 
This translates into  
Loop:  L.S F0, 0(R2)             ; –O1 

ADD.S F3, F0, F1    ; –O2 
ADD.S F4, F3, F1   ; –O3 
S.S. F3, 16(R2)         ; –O4 
S.S. F4, 0(R3)          ; –O5 
ADDI R2,R2, 8 
ADDI R3,R3, 8 
BNE R2,R4, Loop 

 
 
Show the code for the kernel in a software pipelined version of the code that maximizes 
instruction level parallelism.  (4 points) 
 
See schedule in Table 3.26 on page 150 in the textbook. 
 

ASSIGNMENT 3 
 

 
 
3A) Explain in detail what happens in each of the three pipeline stages: Issue, Execute, 
and Write result. In particular explain how data hazards are resolved and in which cycle 
each instruction in the sequence below enters the different stages by filling out a pipeline 
diagram similar to the one below for the following instruction sequence. (6 points) 

 
ADDD   F1, F2, F3  ; –O1 
DIVD    F4, F1, F2  ; –O2 
SUBD   F2, F4, F6  ; –O3 
ADDD  F4, F1, F1  ; –O4 
 

Solution: 
 
The pipeline diagram: 
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 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 
O1 Issue Exec Exec CDB        
O2  Issue Issue Issue Exec Exec Exec Exec Exec CDB  
O3   Issue Exec Exec CDB      
O4    Issue Issue Exec Exec  CDB    

 
1. O1 flows through the pipeline without encountering any hazards 
2. O2 has a RAW hazard with respect to O1 and cannot execute until Cycle 5 

when the result from O1 is broadcast over the CDB. 
3. O3 and O4 are independent of previous instructions and can start executing 

directly since WAR (O3 with respect to O2) and WAW (O4 with respect to O2) 
hazards are resolved through renaming. Note that O2 will not write back to the 
registerfile as register F4 is linked to the destination operand of O4. 

 
3B) Consider the code below as it runs on a pipeline like the one above with support for 
speculative execution. Assume that the branch instruction is predicted to NOT be taken and 
that the prediction is validated to be correct when the last instruction has been speculatively 
executed. Explain in detail how the speculative processor keeps track of the register values 
during speculative execution and after how many cycles after the branch instruction has been 
validated, all register values are available in the register file. (4 points) 

 
BNEZ    R1, LABEL 
ADDD   F1, F2, F3  ;- O1 
DIVD    F4, F1, F2  ;- O2 
SUBD   F2, F5, F6  ;- O3 

 
Solution: 
 
The reorder buffer (ROB) is the main mechanism to keep track of register values when 
instructions are speculatively executed. It buffers speculatively executed instructions in the 
order they appear in the program, that is, in program order. Each entry has room for the 
status of each instruction whether it is speculatively executed or committed. When an 
instruction is committed, it will be removed from the reorder buffer in the next cycle. When 
an instruction is speculatively executed, the entry also contains the value of the destination 
register, if it is available.  
 
Now, when the branch instruction is validated as correctly predicted, it will be removed from 
the ROB in the next cycle. This happens, according to the assumptions, when the last 
instruction has been executed.  
 
Let’s make a pipeline diagram to track the execution of the last three instructions: 
 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 
O1 Issue Exec Exec CDB        
O2  Issue Issue Issue Exec Exec Exec Exec Exec CDB  
O3   Issue Exec Exec CDB      
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We note that from the point the branch instruction has retired from the ROB (in C7 according 
to the assumptions), it takes another four cycles until the result is written back to the 
registerfile. 

 
3C) Explain how a two-level branch predictor works.  (4 points) 
 
See textbook, page 121 with respect to Figure 3.19. 
 

ASSIGNMENT 4 
 

 
 
4A) A computer architect wants to establish the relative performance between a system with 
a blocking and a non-blocking cache using software prefetching. In software prefetching, 
prefetch instructions are appropriately inserted in the code shown below. Assume that five 
instructions are executed per iteration where the CPI for each instruction is one assuming that 
it doesn’t cause a cache miss. On the other hand, if the instruction causes a cache miss, CPI 
is 100. In addition, prefetch instructions result in CPI=2. Both caches have a block size of 
four words. In the non-blocking cache, there are 8 miss-status-holding registers.  
 
 
for (i=0; i<1000; i++) 
     C+=A[i]; 
 

• Show how the code is annotated with prefetch instructions to hide all cache misses.  
• How many MSHRs are needed to make software prefetching maximally effective? 
• How much faster does the program run on the system with a non-blocking cache using 

software prefetching?  
 
A convincing explanation that is easy to follow is needed for full points. (6 points) 
 
Solution: 
 

• Show how the code is annotated with prefetch instructions to hide all cache misses.  
 
According to the assumptions a loop iteration containing a prefetch instruction (CPI=2) and 
five other instructions (CPI=1) takes 7 cycles assuming that all load instruction hits. However, 
one of the five instructions is a load instruction and since the block size is four words, the 
load instruction in every fourth iteration misses. A cache miss takes 100 cycles. The question 
is how many iterations in advance we must launch a prefetch instruction.  
 
i x 7 > 100 ó i = 15 
 
 
for (i=0; i<1000; i++){ 
     prefetch(A[i+15] 
     C+=A[i]; 
 
} 
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• How many MSHRs are needed to make software prefetching maximally effective? 

 
We need 15 MSHRs because there are 15 outstanding prefetch instructions. However, since 
only every fourth load will miss we could optimize the program to launch a prefetch 
instruction only once every fourth iteration. This is however beyond the scope of the 
assignment. 
 

• How much faster does the program run on the system with a non-blocking cache using 
software prefetching?  

 
The program without prefetching: 
 
Consider four iterations as there is a miss every fourth iteration: 
 
Four iterations execute 4 x 4 + 3= 19 instructions that take a single cycle and 1 load instruction 
that takes 100 cycles. In total: 119 cycles 
 
The program with prefetching: 
 
Four iterations execute 4 x 5 = 20 instructions and four prefetch instructions that take a single 
cycle and 4 prefetch instructions that take 8 cycles. In total: 28 cycles 
 
 
 
4B)  
 
In the table below, we show MPKI (Misses-Per-Kilo-Instruction) for a number of 
organizations. The fraction of memory instructions, out of all executed instructions, is 10%. 
From the data, determine the cold miss rate, the capacity miss rate and the conflict miss rate 
for a direct-mapped cache. (3 points) 
 

Cache organization MPKI 
16-KB direct mapped cache 10 
16-KB 2-way assoc. cache 8 
16-KB fully associative cache 6 
Cache with infinite size 2 

 
 
Solution: 
 
Let’s calculate the miss rates. In one thousand instructions 10% are memory instructions, that 
is, 100. So in 100 instructions an infinite-sized cache experience 2 misses. This is a miss rate 
of 2%. So we have the following miss rates: 
 

Cache organization MR 
16-KB direct mapped cache 10 
16-KB 2-way assoc. cache 8 
16-KB fully associative cache 6 



 Page 13(14) 

 

Cache with infinite size 2 
 
The cold miss rate is 2%, the capacity miss rate is (6-2=) 4% and the conflict miss rate is (10-
4 -2=) 4%. 
 
 
4C) How does sequential prefetching work? (3 points) 
 
See textbook, page 209 
 
 
 

ASSIGNMENT 5 
 

 
5A) Consider a multicore system comprising a number of processors (cores) on a chip that 
are connected to a single-level private cache. The private caches use the write-through write 
policy. Xi=Ri and Xi=Wi, mean a read and a write request to the same address from processor 
i, respectively, where Wi=C means that the value C is written by processor i. Now consider 
the following access sequence: 
R1 
R2 
W1=0 
W2=1 
R1 
R2 
What is returned by the second read operation from processor 1 and what is the reason that 
the correct value is not returned given the cache write policy assumed? How can we modify 
the cache controller to make sure that the right value is returned? 
(6 points) 
 
 
Solution: 
 
In a write-through cache, the memory is updated but not the content of any cache that has a 
copy of that block. The first two reads from P1 and P1 creates copies of the original content 
of the block. The next two writes, from P1 and P2 updates their respective private caches and 
memory with the values 0 and 1, from P1 and P2, respectively, in that order. Finally, the read 
from P1 returns the 0, not 1, which is incorrect as the last write, in the order, writes 1, not 0, 
breaking the correctness. The first write, by P1, should have invalidated the block in P2’s 
cache.  
 
 
5B)  
Assume a write-back cache and the MSI-protocol. What bus transaction will cause a state 
transition from state I to state S and what transaction will cause a transition from state S to 
state I? (2 points) 
 
See textbook on page 254. 
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I->S: Any cache miss will result in a read request on the interconnect (bus in this case) that 
will return an up-to-date copy from memory.  
 
S->I: This state transition is triggered by another processor that writes to a block that is 
present (Upgrade) or not present (BusRdX) in its cache. It will result in invalidating the local 
copy in the cache resulting in downgrading the block to Invalid (I). 
 
 
5C) Explain the concept of interleaved (fine-grain) multithreading.  Consider a five-stage 
pipeline. What additional mechanisms and pipeline stages must be added to support 
interleaved multithreading? How many cycles are lost on a thread switch? (4 points) 
 
See textbook, pages 438-439 in the textbook. 
 
 

 
 
 
 
 
 
 
 
 

 


