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Exam in DAT 105 (DIT 051) Computer Architecture 
  
 
Time: December 16, 2013 14 – 18 in V (Chalmers students) and H (Gothenburg University students) 
 
 
Person in charge of the exam: Angelos Arelakis, Phone: 0763-103557 
 
Supporting material/tools: Chalmers approved calculator. 
 
Exam Review: On January 8,  2014 10-12 in Room 4128   
 
Grading intervals:   
 
• Fail:  Result < 24 
• Grade 3: 24 <= Result < 36 
• Grade 4: 36 <= Result < 48 
• Grade 5: 48 <= Result 
 
NOTE 1: Bonus points from Real-stuff studies and Quizzes will be added to the exam results 
 
NOTE 2: Answers must be given in English 
 
GOOD LUCK! 
Per  Stenström  
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[General  disclaimer:  If  you  feel  that  sufficient  facts  are  not  provided  to  solve  a  
problem,  either  1)  ask  the  teacher  when  he  visits  the  exam,  or  2)  make  your  own  
additional  assumptions.  Additional  assumptions  will  be  accepted  if  they  are  
reasonable  and  required  to  solve  the  problem.  Always  make  sure  to  motivate  
your  answers.]  

 
ASSIGNMENT 1 

 
 

The tables below show the relative instruction frequency and CPI on two machines (A and 
B) and a reference machine (R) with the same Instruction Set Architecture (ISA) for two 
single-threaded programs, P1 and P2, respectively, where P1 executes twice as many 
instructions as P2. The operating frequencies of the three machines (A, B and R) are also 
shown.  
 

Program P1 A 
(Frequency in 
percent/CPI) 

B R 

Arithmetic/Logic 40/1 40/2 40/2 
Loads 25/2 25/3 25/2 
Stores 10/1 10/1 10/2 
Branches (untaken) 8/1 8/1 8/2 
Branches (taken) 12/3 12/3 12/2 
Misc. 5/1 5/1 5/2 

 
 

Program P2 A 
(Frequency in 
percent/CPI) 

B R 

Arithmetic/Logic 20/1 20/2 20/2 
Loads 35/2 35/3 35/2 
Stores 20/1 20/1 20/2 
Branches (untaken) 8/1 8/1 8/2 
Branches (taken) 12/3 12/3 12/2 
Misc. 5/1 5/1 5/2 

 
 
 

Clock freq. 
(GHz) 

 

Machine A 1 
Machine B 1.2 
Machine R 1 

 
1A) Using execution time as the performance measure, derive the geometric mean of the 
performance of machine A and B, using R as a reference. (3 points) 
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1B) For a third program, let’s call it P3, the average CPI is 1, 2, and 1, on machine A, B, 
and R, respectively and P3 executes twice as many instructions as P1. What is the geometric 
mean of the performance of A and B, using R as a reference for programs P1, P2 and P3?  
(3 points) 
 
1C) What is the maximum improvement in performance that can be achieved for Machine 
A and B if the execution of Arithmetic/Logic instructions could be accelerated indefinitely 
on program P1?  
(3 points) 
 
1D) Now assume a homogeneous multicore system on a 1 cm2 die built from multiple 
instances of either machine A or B. Let us assume that machine A and B occupy 0.1 cm2 and 
0.05 cm2 each, respectively. Now, given that throughput is our performance metric, what is 
the throughput of the multicore built from machine A versus the one built from machine B, 
when running multiple instances of Program P1? (3 points) 
 
 

 
ASSIGNMENT 2 

 
 
We consider in this assignment a VLIW architecture that can issue two memory, two 
floating-point, one integer, and one branch instruction each cycle according to the pipeline 
organization below.  There are no forwarding units. 
 

 
2A) How many cycles does it take to resolve a RAW dependency between instructions of 
different types, i.e., between a floating-point operation and a subsequent floating point 
operation, between a floating-point operation and a subsequent store operation, between a 
load operation and a subsequent floating point operation, and between a store operation and 
a subsequent load operation? (3 points) 
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2B)  
Consider the following simple computation: 
 
LOOP: L.D   F0, 0(R1) 
      ADD.D F4,F0 F2 
      S.D   F4,0(R1) 
      SUBI  R1,R1, #8 
      BNE   R1,R2, LOOP 
 
 
We want to use software pipelining to execute the loop on the VLIW architecture. Derive 
the kernel of a software-pipelined loop by filling out the schedule table below for as many 
cycles needed to fill the “software pipeline” (i.e., not the VLIW pipeline). (3 points) 
 
 ITE 1 ITE 2 … 
INST 1    
INST 2    
…    
 
2C)  
Under what circumstances do WAR hazards not occur? In case they occur, show how 
Rotating Registers can be used to avoid them by first explaining how Rotating Registers 
work and then by showing how the kernel is modified to make use of them. (3 points) 
 
 
2D)  
Consider the following code: 
 
LW  R4, 0(R1) 
ADDI R6,R4,#1      
BEQ  R5,R4,LAB 
LW   R6,0(R2) 
LAB: SW R6, 0(R1) 
 
Use Predicated Instructions to eliminate the branch in the code above and clearly define the 
semantics of the used predicated instructions. (3 points) 
 
 

ASSIGNMENT 3 
 
 
 

The diagram below shows a pipeline using the Tomasulo algorithm for dynamic instruction 
scheduling. The pipeline consists of 5 stages (apart from Instruction Fetch): Dispatch, Issue, 
Execution, Cache access and CDB write. Assume that all integer and branch instructions 
execute in a single cycle whereas floating-point instructions execute in six cycles, thus the 
duration of the execution stage varies. A cache access (instruction and data) takes a single 
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cycle whereas stores are decomposed into two instructions (one for address generation and 
one for cache access).  

 
 
 

 
 

3A)  
Describe in detail what happens in each stage when the floating-point ADD instruction – 
ADD.S F4, F2, F4 – is executed and the previous load instruction – L.S F2, 0(R1) is being 
executed and has not updated the register file (due to a cache miss) when the ADD 
instruction is dispatched. (3 points) 
 
3B)  
Explain in detail how a Reorder Buffer can enable speculative execution by first explaining 
what information is kept in each of the entries and what operations are carried out when an 
instruction finishes its execution (speculatively) and when it is eventually committed.  
(3 points) 
 
3C)  
The figure below shows a two-level branch predictor. Let us use it to predict the outcome of 
one particular branch instruction using a single bit predictor and using m=4 bits of branch 
outcome. Initially, all prediction bits are cleared (not taken). If the 16 most recent 
executions of the branch are taken, what is the branch prediction accuracy? (3 points) 
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3D) 
Explain how explicit register renaming is used using a physical register file and then 
keeping track of the latest and the retired value of a particular register using a front-end and 
a back-end Register Alias Table (RAT). (3 points) 
  

 
ASSIGNMENT 4 

 
 
 

4A)  
A computer architect wants to establish how many misses in each of the three categories 
there are for a 4-block, two-way associative cache using LRU. A program does the 
following block references: 0 1 2 3 4 0 5 1 8 4 9 5.  
 
Establish the number of cold, capacity (using the OPT replacement policy) and conflict 
misses. (6 points) 
 

 
4B)   
Consider the following program: 
LOOP: LD.S F0, 0(R1) 
            ADDI R1,R1,#8 
            J LOOP 
 
It is executed on a system with a lock-up free cache having 16 miss-status holding registers 
(MSHRs). The CPI for ADDI and J is 1 and 3, respectively, whereas the CPI of LD in case 
the cache is not blocked is 1. The miss penalty is 100 cycles and the cache block size is 64 
bytes.  

i) After how many cycles will the cache make the processor stall? 
ii) What is the average CPI when executing the program assuming an infinite 

number of iterations? 
(4 points)  
 
4C)  
Explain what next-block prefetching is and how it is used to improve the performance of the 
instruction cache. (2 points) 
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ASSIGNMENT 5 
 

 
 
5A) Consider a multicore system comprising a number of processors (cores) on a chip that 
are connected to a single-level private cache. The private caches use the write-back write 
policy. Xi=Ri and Xi=Wi, means a read and a write request to the same address from 
processor i, respectively, where Wi=C means that the value C is written by processor i. Now 
consider the following access sequence: 
 
W1=0 
R1 
R2 
W1=1 
R2 
 
What should be returned by the second read operation from processor 2 and what is the 
reason that the correct value is not returned given the cache write policy assumed?  
(3 points) 
 
5B)  
Explain how we can change the cache controller of a write-back cache using appropriate 
states to implement the MSI cache coherence protocol. Give at least one example of a 
transition from one of the M-S-I states to any other. (6 points) 
 
5C)  
A computer architect is contemplating whether to use block (coarse-grained) multithreading 
or interleaved (fine-grained) multithreading. She knows that a miss is taken every tenth 
instruction and that it takes ten cycles to handle it. Moreover, all instructions are executed 
with CPI=1.  How many threads are needed in each case to keep the pipeline busy all the 
time? (3 points) 
 
 
 
 
 

*** GOOD LUCK! *** 
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Solutions for Exam 2013-12-16 
 

 
ASSIGNMENT 1 

 
 

1A) According to the assumptions, P1 executes twice as many instructions as P2. That is, if 
P2 executes N instructions, P1 executes 2N instructions. Moreover, since all machines have 
the same ISA, the number of instructions executed for one program is the same across the 
machines.  
 
For P1 on A: T = 2N x CPI x Tc,  
where CPI =  0.40x1 + 0.25x2 + 0.10x1 + 0.08x1 + 0.12x3 + 0.05x1 =  
T = 2N x 1.49 x 1 = 2.98 N ns 
 
For P2 on A: T = N x CPI x Tc,  
where CPI =  0.20x1 + 0.35x2 + 0.20x1 + 0.08x1 + 0.12x3 + 0.05x1 =  
T = N x 1.59 x 1 = 1.59 N ns  
 
For P1 on B: T = 2N x CPI x Tc 
where CPI = 0.40x2 + 0.25x3 + 0.10x1 + 0.08x1 + 0.12x1 + 0.05x1 = 
T =  2N x 1.90 x 0.83 = 2.42 N ns 
 
For P2 on B: T = N x CPI x Tc,  
where CPI = 0.20x2 + 0.35x3 + 0.20x1 + 0.08x1 + 0.12x3 + 0.05x1 =  
T = N x 1.55 x 0.83 = 1.29 N ns 
 
For P1 on R: T = 2N x CPI x Tc 
where CPI = 0.40x2 + 0.25x2 + 0.10x2 + 0.08x2 + 0.12x2 + 0.05x2 = 1 
T =  2N x 2 x 1 ns = 4N ns 
 
For P2 on R: T = N x CPI x Tc,  
where CPI = 0.20x2 + 0.35x2 + 0.20x2 + 0.08x2 + 0.12x2 + 0.05x2 =  
T = N x 1 x 1 = 2N ns 
 
We can now determine the geometric means starting with Machine A. 
 
P1: SP = TR/TA= 4/2.98 = 1.34 
P2: SP = TR/TA = 2/1.59 = 1.26 
Geom mean for Machine A= (1.34x1.26)1/2=1.30 
 
For Machine B 
P1: SP = TR/TB = 4/2.42 = 1.65 
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P2: SP = TR/TB = 2/1.29 = 1.55 
Geom mean for Machine B= (1.65x1.55)1/2=1.46 
 
1B)  
For Machine A CPI is 1 so execution time for P3 is 4N x 1 x 1 = 4N 
For Machine B CPI is 2 so execution time for P3 is 4N x 2 x 0.83 = 6.6N 
For Machine R CPI is 1 so execution time for P3 is 4N x 1 x 1 = 4N 
 
We can now calculate geometric mean for Machine A as follows: 
P1 and P2: Geometric mean is 1.30 
P3: Speedup is 1, so geom mean = (1 x 1.302)1/3=1.19 
 
Same for Machine B: 
P1 and P2: Geom mean is 1.46 
P3: Speedup is 6.6/4=1.65, so geom mean = (1.65 x 1.462)1/3= 1.52 
 
1C) The maximum performance improvement is obtained if ALU instructions are done in 
zero time on program P1. 
 
For P1 on A: T = 2N x CPI x Tc,  
where CPI =  0.25x2 + 0.10x1 + 0.08x1 + 0.12x3 + 0.05x1 =  
T = 2N x 1.09 x 1 = 2.18 N ns (as compared to 2.98N) 
 
Etc. 
 
1D) We can host 10 As or 20 Bs on the same die given the area assumptions.  
 
First, the speedup of the execution time of B over A on P1 is TA/TB = 2.98/2.42 = 1.23 
 
The  speedup of the throughput of B over A on P1 is 20 x 1.23/10 = 2.46 
 
 

 
 

ASSIGNMENT 2 
 

 
We consider in this assignment a VLIW architecture that can issue two memory, two 
floating-point, one integer, and one branch instruction each cycle according to the pipeline 
organization below.  There are no forwarding units. 
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2A) How many cycles does it take to resolve a RAW dependency between instructions of 
different types, i.e., between a floating-point operation and a subsequent floating point 
operation, between a floating-point operation and a subsequent store operation, between a 
load operation and a subsequent floating point operation, and between a store operation and 
a subsequent load operation? (3 points) 
 
 
RAW LD FP ADD SD 
LD -- 2 -- 
FP ADD -- 4 4 
SD 1 -- -- 
 
 
2B)  
Let’s mark the first three instructions with O1 – O3: 
 
LOOP: L.D   F0, 0(R1)  - O1 
      ADD.D F4,F0 F2   - O2 
      S.D   F4,0(R1)   - O3 
      SUBI  R1,R1, #8 
      BNE   R1,R2, LOOP 
 
 
The scheduling table will look like this. We note that the software pipeline is filled at INST 
7 in which the Store from iteration 1 is executed together with the Add and the Load from 
iterations 6 and 8, respectively. 
 
 ITE 

1 
ITE 2 ITE3 ITE4 ITE5 ITE6 ITE7 ITE8 

INST 1 O1        
INST 2  O1       
INST 3 O2  O1      
INST 4  O2  O1     
INST 5   O2  O1    
INST 6    O2  O1   
INST 7 O3    O2  O1  
INST 8  O3    O2  O1 
INST 9   O3    O2  
INST10    O3    O2 
INST 11     O3    
INST 12      O3   
INST 13       O3  
INST 14        O3 
         
 
2C) See textbook.  
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2D)  
The predicated code is: 
 
LW  R4, 0(R1) 
ADDI R6,R4,#1   
SUBI R7,R5,R4    
LWNZ   R6,0(R2),R7 
SW R6, 0(R1) 
 
Where LWNZ is executed if and only if R7 is zero. 
 

 
ASSIGNMENT 3 

 
 

3A)  See textbook. 
 
3B)  See textbook. 
 
3C)  
 
On the first four predictions, the four most significant bits in the index for the branch 
prediction buffer are the following: 
0001, 0011, 0111, 1111. These will all cause mispredictions. All subsequent predinctions 
will be correct so the prediction accuracy is 12/16. 
 
 
3D) See textbook. 
 

 
ASSIGNMENT 4 

 
 
 

4A)  
 
Cold misses: This is essentially the number of unique blocks being accessed: 8 
 
Capacity misses: 
 
Access to block 4 will evict block 2 so the content is 0, 1, 3, 4 
Access to block 0 will hit 
Access to block 5 will evict block 3 as it is not accessed in the future so the content is  
0, 1, 4, 5 
Access to block 1 hits 
Access to block 8 will evict 0 so content is 1, 4, 5, 8. 
Access to block 4 hits  
Access to block 9 evicts 1 
Access to block 5 hits 
No further misses so number of capacity misses is 0. 
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Conflict misses: 
Access to block 4 replaces LRU which is o so conent is 2,4,1,3 
Access to block 0 misses (conflict miss) and evicts 2 (same set) so content is 0,4,1,3 
Access to block 5 misses (cold miss) and evicts 1 so content is 0,4,3,5 
Access to block 1 misses (conflict miss) and evicts 3 so content is 0,4,1,5 
Access to block 8 misses (cold miss) and evicts 4 so content is 0,8,1,5 
Access to block 4 misses (conflict miss) and evicts 0 so content is 4,8,1,5 
Access to block 9 misses (cold miss) and evicts 5 so content is 4,8,1,9 
Access to block 5 misses (conflict miss) and evicts 1 so content is 4,8,1,5 
 
Number of conflict misses: 4 
 
 
4B)   
 
The cache can have 16 outstanding cache misses (primary or secondary) so it will block on 
its 17th iterations. One iteration takes 5 cycles so 16 iterations take 80 cycles. Since the miss 
penalty is 100 cycles the processor will have to stall for 20 cycles on the 17th execution of 
the load instruction.  
 
The average CPI is essentially the number of cycles it takes to execute 16 iterations (100 
cycles) divided by the number of instructions in these 16 iterations (3x16=48). Thus, CPI = 
100/48  
 
 
4C)  See textbook 

 
ASSIGNMENT 5 

 
 
 

5A)  The second read operation from processor 2 will return the content in its cache which 
is zero whereas one should be returned which is the last written value. 
 
5B) See textbook. 
 
5C)  
 
Under fine-grained multithreading, when a processor encounters a cache miss we will have 
to hide the latency of it by switching from thread to thread so we need ten. 
 
Under coarse-grained multithreading we switch to another thread only when a miss is 
encountered and continue with that one until that encounters a cache miss. Ideally, we could 
do with two threads because when one encounters a cache miss, the next one can execute 
another ten instructions before a cache miss is encountered.  

 
 

 


