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Assignment 1

A) Let us call the first design: basic, and the one with higher clock frequency: high. Then, the 
speedup can be expressed as:

Speedup=
Performancehigh
Performancebasic

=
CPU Timebasic

CPU Timehigh

Where CPU Time is the execution time of the program which can be expressed as:

CPUtime=IC×CPIaverage×T c

Here, the average CPI and TC will differ between the designs. The number of instructions IC will be 
the same in both cases. We get:

Speedup=
CPIaverage

basic ×T c
basic

CPIaverage
high ×T c

high =
CPIaverage

basic

CPIaverage
high ×1.20

Since the clock cycle time of the basic design is 20% longer than in the high frequency design. To 
calculate the speedup we now need to compute the average CPI of both design options. To do this, we 
only consider the loop (a slight approximation) and compute the clock cycles needed for the execution 
of one iteration in the loop divided by the number of instructions executed for one iteration.

The average CPI can be split into:

CPIaverage=CPIexecutionCPImemory stalls

CPImemory stalls=Miss rate×Memoryaccessesper instruction×Miss penalty

The latencies for each instruction in the loop are:

Latency of each 
instruction

basic high

LD 1 1

DMUL 2 3

DADD 1 1

SD 1 1

DADDI 1 1

DADDI 1 1

BNE 2 2

SUM 9 10

CPI execution 9/7 10/7

The miss penalty for the basic design is given as 10 cycles. For the high frequency design, the miss 
penalty will increase in proportion to the frequency increase since the absolute miss penalty time stays 
the same. We therefore get 12 cycles miss penalty in the high frequency design.

It is time to put everything together:



CPIaverage
basic =9/70.125×2 /7×10

CPIaverage
high =10/70.125×2/7×12

Speedup=
CPIaverage

basic

CPIaverage
high ×1.20=

11.5
13.0

×1.2=1.062

Thus, we get a speedup of 6.2%.

NOTE: An additional valid assumption would be to insert a stall cycle between the LD and the 
DMUL due to the data dependency if you assume a normal 5-stage pipeline with forwarding. So even 
if the text says “No other stalls occur”, adding one more cycle to the loop for both designs would be 
ok as well. The speedup would be slightly higher (7.1% speedup) in that case.

B) Amdahl's law states that:

Speedupoverall=
1

1−Fractionenhanced
Fractionenhanced

Speedupenhanced

So it gives the overall speedup when speeding up a fraction of the original execution time.

If we halve the miss penalty in the high freqency design, we speed up a fraction of the execution time 
by a factor of 2. But, to compute the fraction we need to look at the original CPU Time formula:

CPIaverage=CPIexecutionCPImemory stalls

CPImemory stalls=Miss rate×Memoryaccessesper instruction×Miss penalty

For the high frequency design we had:

CPIaverage
high =10/70.125×2/7×12

So, the fraction we speed up is the second term (the miss penalty term):

Fractionenhanced=
0.125×2 /7×12

10/70.125×2 /7×12
=

1.5
101.5

=0.13

Using Amdahl's law we get the additional speedup as:

Speedupoverall=
1

1−Fractionenhanced
Fractionenhanced

Speedupenhanced

=
1

1−0.13
0.13

2

=1.07

Thus, we get an additional 7% speedup from halving the miss penalty in the high frequency design.

C) The yield is the fraction of good dies (chips) on a wafer. It depends on the complexity and 
maturity of the manufacturing process (defects per unit area) and the die area. Bigger chip area means 
lower yield. The cost of a chip goes up when the yield goes down. Thus, a bigger chip area means 
bigger cost per chip due to a decreased yield.

D) The trade-off here comes from looking at the dynamic power use. For CMOS chips, the 
dynamic power use is:

Power dynamic=1/2×Capacitiveload×Voltage2×Frequency switched



Running a task on two cores with lower clock frequency can be more power efficient than using only 
one core with double the frequency. The reason is that using a lower clock frequency can permit the 
use of a lower voltage and thereby the use of less power (see formula above).

Assignment 2

A) The different types of dependencies together with correponding examples are:

Type Example

Data dependencies An instruction uses a value produced by an earlier instruction. For 
example, the DMUL reads register R4 which is written by the preceding 
LD instruction.

Name dependencies Two instructions use the same name (register) but there is no data flow 
between the instructions associated with that name. For example, both the 
DMUL and the DADD write to register R5 (output dependence) but the 
second R5 could be renamed to something else without changing the data 
flow between these instructions.

Control dependencies The execution of an instruction depends on the outcome of previous 
branch instructions. For example, the execution of the loop body is 
control dependent on the BNE instruction in all loop iterations except the 
first.

B) Data hazards can occur in pipelines due to data dependencies in the executing program. 
Different types of data hazards:

Type Explanation / Example

RAW Read After Write. An instruction i tries to read a source before a preceding instruction 
writes it. Instruction i might read an old value.

WAR Write After Read. An instruction writes a new value before a preceding instruction i 
has finished reading it. The instruction i might get the new value.

WAW Write After Write. An instruction writes a new value before a preceding instruction 
writes an old value. The old value might be the one remaining in the destination.

C) Rescheduling is done in order to move dependent instructions further apart (to reduce the risk 
of hazards forcing the pipeline to stall). Loop unrolling duplicates the loop body in order to make the 
rescheduling easier and to make the code more efficient by eliminating some instructions. Register 
renaming is often needed to make the unrolling work. The program with the loop body unrolled one 
time (one copy):



   ANDI  R3, R3, 0     # R3 = 0
LOOP:
   LD    R4, 0(R1)
   DMUL  R5, R4, R4
   DADD  R5, R3, R5
   SD    R5, 0(R1)     # new[i] = old[i-1] + old[i]*old[i]
   DADDI R3, R4, 0
   DADDI R1, R1, 8
   LD    R4, 0(R1)
   DMUL  R5, R4, R4
   DADD  R5, R3, R5
   SD    R5, 0(R1)     # new[i] = old[i-1] + old[i]*old[i]
   DADDI R3, R4, 0
   DADDI R1, R1, 8
   BNE   R1, R2, LOOP

Next steps is to merge the DADDI instructions, rename registers, and reschedule instructions. This is 
one example of how the program can be modified:

   ANDI  R3, R3, 0     # R3 = 0
LOOP:
   LD    R10, 0(R1)
   LD    R14, 8(R1)
   DADDI R1, R1, 16
   DADDI R13, R10, 0
   DMUL  R11, R10, R10
   DMUL  R15, R14, R14
   DADD  R12, R3, R11
   DADD  R16, R13, R15
   DADDI R3, R14, 0
   SD    R12, -16(R1)   # new[i] = old[i-1] + old[i]*old[i]
   SD    R16, -8(R1)    # new[i] = old[i-1] + old[i]*old[i]
   BNE   R1, R2, LOOP

Here, each destination register is renamed to a new register number except for the loop carried 
dependencies: R1 and R3. This permits mixing instructions from both loop bodies while making sure 
not to break any true data dependency. The general rescheduling principle is to try to put independent 
instructions between the writes and the later reads to a register to avoid stalls due to RAW hazards. 
There are many ways to do this so the important thing in this answer is to point out the principles.

Assignment 3

A) See book pages 82-83 and Figure 2.4. For our example program we would have one entry 
corresponding to the BNE instruction in the end of the program. The prediction would evolve 
according to this table if we assume we start in state 00:



Execution of the 
BNE instuction

Prediction state 
before execution

Prediction State after execution

First 00 Not taken (wrong) 01 (it was taken)

Second 01 Not taken (wrong) 11 (it was taken)

Third 11 Taken (correct) 11 (it was taken)

4th, 5th, ... 11 Taken (correct) 11 (it was taken)

1000th 11 Taken (wrong) 10 (was not taken)

For a program with two branches, we would get a 2-bit state entry for each branch as long as they do 
not share the same index in the branch-prediction buffer. Branches with different index (entries) are 
not correlated with each other.

B) The key point for supporting speculation is to commit architectural visible changes in program 
order. It must be possible to cancel (flush) speculative results without any remaining visible changes 
in the registers or in the memory. Registers and memory should only be written in the commit stage. 
Before that, the reorder buffer holds the speculative (temporary) results.

C) The corresponding steps for a store instruction is:

  

Store Processing

1. Issue when reservation station and ROB entry is available
• Read already available operands from registers and instruction
• Tag unavailable operands with ROB entry
• Mark ROB entry as busy

2. Execute after issue
• Wait for operand values on CDB (if not already available)
• Compute address and store it in ROB entry

3. Write result when CDB and ROB available
• Update ROB entry with source register value, and mark as ready
• Free reservation station

4. Commit when at head of ROB and ready
• Write result (source register value) to memory at computed address
• Free ROB entry

The important points are: (1) The actual write is done at the commit stage, (2) To carry out the write, 
the address needs to be computed (execute stage), and, (3) the source operand (the value to write) is 
needed before commit is possible.

D) RAW hazards are avoided by delaying instruction execution until the source operands are 
available. Instructions wait in a reservation station until source operands are available. Earlier 
instructions that write dependent values send their results directly to the waiting reservation stations.



Assignment 4

A) The advantage is a reduced hit time since the indexing in the cache does not need to wait for 
the virtual to physical address translation to finish. Disadvantages: (1) Page-level protection needs to 
be enforced even when no translation and lookup in the TLB is done, (2) The translation is process 
dependent. When processes are switched, the cache must maybe be flushed. (3) Alias problems might 
cause same data to appear in different cache locations leading to inconsistencies.

B) To reduce miss-rate, some options are: (1) Larger block size (compulsory), (2) Bigger cache 
(capacity), (3) Higher associativity (conflict), (4) Compiler techniques to reduce memory accesses 
and cache misses (all miss types), (5) Hardware prefetching (all miss types), and (6) Software 
prefetching (all miss types).

C) The virtual memory system can cause problems since a guest OS should not be allowed to 
modify page tables directly. Thus, the VMM must trap any attempt by the guest OS to change its page 
table. This is commonly accomplished by write protecting the page tables and letting the VMM tell 
the hardware to use a shadow page table instead of the guest OS page tables.

D) Redundant Array of Inexpensive (Independent) Disks. See book, pages 362-366.



Assignment 5D

A) Some factors that limit the exploitable ILP (book Section 3.2):

Factor Comment

Window size (the size of 
buffers to keep track of 
instructions)

At small window sizes, the processor simply cannot see the future 
instructions that could have been issued in parallel.

Branch, jump prediction It is hard and expensive to reduce the miss prediction rate beyond a 
few percent. Misspeculations reduce the exploitable ILP.

Finite number of registers Registers are needed to store temporary results. This can limit the 
amount of parallel work possible.

Imperfect alias analysis If false dependencies through memory and name dependencies can be 
detected, more instructions can be issued in parallel. However, this is 
sometimes impractically complex.

B) To realize SMT, we need to have a per-thread renaming table, having separate PC registers, 
and provide the capability for instructions from multiple threads to commit.

C) Informally, cache coherence means that a value read from the memory systems should reflect 
the latest write to that same memory location. For an example of what happens when cache coherence 
is missing, refer to the book, Figure 4.3 (page 206).

D) The correct connections:

 A 4
 B 6
 C 13
 D 7
 E 1
 F 2
 G 8
 H 12
 I 5
 J 14
 K 11
 L 9 or L 3
 M 3 or M 9
 N 10

Note: 3 and 9 is equivalent
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