
Solutions exam 2008-12-18
By Thomas L, 2008-12-29

Assignment 1

A) Let us call the first design: basic, and the one with higher clock frequency: high. Then, the
speedup can be expressed as:

Speedup=
Performancehigh
Performancebasic

=
CPU Timebasic

CPU Timehigh

Where CPU Time is the execution time of the program which can be expressed as:

CPUtime=IC×CPIaverage×T c

Here, the average CPI and TC will differ between the designs. The number of instructions IC will be
the same in both cases. We get:

Speedup=
CPIaverage

basic ×T c
basic

CPIaverage
high ×T c

high =
CPIaverage

basic

CPIaverage
high ×1.20

Since the clock cycle time of the basic design is 20% longer than in the high frequency design. To
calculate the speedup we now need to compute the average CPI of both design options. To do this, we
only consider the loop (a slight approximation) and compute the clock cycles needed for the execution
of one iteration in the loop divided by the number of instructions executed for one iteration.

The average CPI can be split into:

CPIaverage=CPIexecutionCPImemory stalls

CPImemory stalls=Miss rate×Memoryaccessesper instruction×Miss penalty

The latencies for each instruction in the loop are:

Latency of each
instruction

basic high

LD 1 1

DMUL 2 3

DADD 1 1

SD 1 1

DADDI 1 1

DADDI 1 1

BNE 2 2

SUM 9 10

CPI execution 9/7 10/7

The miss penalty for the basic design is given as 10 cycles. For the high frequency design, the miss
penalty will increase in proportion to the frequency increase since the absolute miss penalty time stays
the same. We therefore get 12 cycles miss penalty in the high frequency design.

It is time to put everything together:

CPIaverage
basic =9/70.125×2 /7×10

CPIaverage
high =10/70.125×2/7×12

Speedup=
CPIaverage

basic

CPIaverage
high ×1.20=

11.5
13.0

×1.2=1.062

Thus, we get a speedup of 6.2%.

NOTE: An additional valid assumption would be to insert a stall cycle between the LD and the
DMUL due to the data dependency if you assume a normal 5-stage pipeline with forwarding. So even
if the text says “No other stalls occur”, adding one more cycle to the loop for both designs would be
ok as well. The speedup would be slightly higher (7.1% speedup) in that case.

B) Amdahl's law states that:

Speedupoverall=
1

1−Fractionenhanced
Fractionenhanced

Speedupenhanced

So it gives the overall speedup when speeding up a fraction of the original execution time.

If we halve the miss penalty in the high freqency design, we speed up a fraction of the execution time
by a factor of 2. But, to compute the fraction we need to look at the original CPU Time formula:

CPIaverage=CPIexecutionCPImemory stalls

CPImemory stalls=Miss rate×Memoryaccessesper instruction×Miss penalty

For the high frequency design we had:

CPIaverage
high =10/70.125×2/7×12

So, the fraction we speed up is the second term (the miss penalty term):

Fractionenhanced=
0.125×2 /7×12

10/70.125×2 /7×12
=

1.5
101.5

=0.13

Using Amdahl's law we get the additional speedup as:

Speedupoverall=
1

1−Fractionenhanced
Fractionenhanced

Speedupenhanced

=
1

1−0.13
0.13

2

=1.07

Thus, we get an additional 7% speedup from halving the miss penalty in the high frequency design.

C) The yield is the fraction of good dies (chips) on a wafer. It depends on the complexity and
maturity of the manufacturing process (defects per unit area) and the die area. Bigger chip area means
lower yield. The cost of a chip goes up when the yield goes down. Thus, a bigger chip area means
bigger cost per chip due to a decreased yield.

D) The trade-off here comes from looking at the dynamic power use. For CMOS chips, the
dynamic power use is:

Power dynamic=1/2×Capacitiveload×Voltage2×Frequency switched

Running a task on two cores with lower clock frequency can be more power efficient than using only
one core with double the frequency. The reason is that using a lower clock frequency can permit the
use of a lower voltage and thereby the use of less power (see formula above).

Assignment 2

A) The different types of dependencies together with correponding examples are:

Type Example

Data dependencies An instruction uses a value produced by an earlier instruction. For
example, the DMUL reads register R4 which is written by the preceding
LD instruction.

Name dependencies Two instructions use the same name (register) but there is no data flow
between the instructions associated with that name. For example, both the
DMUL and the DADD write to register R5 (output dependence) but the
second R5 could be renamed to something else without changing the data
flow between these instructions.

Control dependencies The execution of an instruction depends on the outcome of previous
branch instructions. For example, the execution of the loop body is
control dependent on the BNE instruction in all loop iterations except the
first.

B) Data hazards can occur in pipelines due to data dependencies in the executing program.
Different types of data hazards:

Type Explanation / Example

RAW Read After Write. An instruction i tries to read a source before a preceding instruction
writes it. Instruction i might read an old value.

WAR Write After Read. An instruction writes a new value before a preceding instruction i
has finished reading it. The instruction i might get the new value.

WAW Write After Write. An instruction writes a new value before a preceding instruction
writes an old value. The old value might be the one remaining in the destination.

C) Rescheduling is done in order to move dependent instructions further apart (to reduce the risk
of hazards forcing the pipeline to stall). Loop unrolling duplicates the loop body in order to make the
rescheduling easier and to make the code more efficient by eliminating some instructions. Register
renaming is often needed to make the unrolling work. The program with the loop body unrolled one
time (one copy):

 ANDI R3, R3, 0 # R3 = 0
LOOP:
 LD R4, 0(R1)
 DMUL R5, R4, R4
 DADD R5, R3, R5
 SD R5, 0(R1) # new[i] = old[i-1] + old[i]*old[i]
 DADDI R3, R4, 0
 DADDI R1, R1, 8
 LD R4, 0(R1)
 DMUL R5, R4, R4
 DADD R5, R3, R5
 SD R5, 0(R1) # new[i] = old[i-1] + old[i]*old[i]
 DADDI R3, R4, 0
 DADDI R1, R1, 8
 BNE R1, R2, LOOP

Next steps is to merge the DADDI instructions, rename registers, and reschedule instructions. This is
one example of how the program can be modified:

 ANDI R3, R3, 0 # R3 = 0
LOOP:
 LD R10, 0(R1)
 LD R14, 8(R1)
 DADDI R1, R1, 16
 DADDI R13, R10, 0
 DMUL R11, R10, R10
 DMUL R15, R14, R14
 DADD R12, R3, R11
 DADD R16, R13, R15
 DADDI R3, R14, 0
 SD R12, -16(R1) # new[i] = old[i-1] + old[i]*old[i]
 SD R16, -8(R1) # new[i] = old[i-1] + old[i]*old[i]
 BNE R1, R2, LOOP

Here, each destination register is renamed to a new register number except for the loop carried
dependencies: R1 and R3. This permits mixing instructions from both loop bodies while making sure
not to break any true data dependency. The general rescheduling principle is to try to put independent
instructions between the writes and the later reads to a register to avoid stalls due to RAW hazards.
There are many ways to do this so the important thing in this answer is to point out the principles.

Assignment 3

A) See book pages 82-83 and Figure 2.4. For our example program we would have one entry
corresponding to the BNE instruction in the end of the program. The prediction would evolve
according to this table if we assume we start in state 00:

Execution of the
BNE instuction

Prediction state
before execution

Prediction State after execution

First 00 Not taken (wrong) 01 (it was taken)

Second 01 Not taken (wrong) 11 (it was taken)

Third 11 Taken (correct) 11 (it was taken)

4th, 5th, ... 11 Taken (correct) 11 (it was taken)

1000th 11 Taken (wrong) 10 (was not taken)

For a program with two branches, we would get a 2-bit state entry for each branch as long as they do
not share the same index in the branch-prediction buffer. Branches with different index (entries) are
not correlated with each other.

B) The key point for supporting speculation is to commit architectural visible changes in program
order. It must be possible to cancel (flush) speculative results without any remaining visible changes
in the registers or in the memory. Registers and memory should only be written in the commit stage.
Before that, the reorder buffer holds the speculative (temporary) results.

C) The corresponding steps for a store instruction is:

Store Processing

1. Issue when reservation station and ROB entry is available
• Read already available operands from registers and instruction
• Tag unavailable operands with ROB entry
• Mark ROB entry as busy

2. Execute after issue
• Wait for operand values on CDB (if not already available)
• Compute address and store it in ROB entry

3. Write result when CDB and ROB available
• Update ROB entry with source register value, and mark as ready
• Free reservation station

4. Commit when at head of ROB and ready
• Write result (source register value) to memory at computed address
• Free ROB entry

The important points are: (1) The actual write is done at the commit stage, (2) To carry out the write,
the address needs to be computed (execute stage), and, (3) the source operand (the value to write) is
needed before commit is possible.

D) RAW hazards are avoided by delaying instruction execution until the source operands are
available. Instructions wait in a reservation station until source operands are available. Earlier
instructions that write dependent values send their results directly to the waiting reservation stations.

Assignment 4

A) The advantage is a reduced hit time since the indexing in the cache does not need to wait for
the virtual to physical address translation to finish. Disadvantages: (1) Page-level protection needs to
be enforced even when no translation and lookup in the TLB is done, (2) The translation is process
dependent. When processes are switched, the cache must maybe be flushed. (3) Alias problems might
cause same data to appear in different cache locations leading to inconsistencies.

B) To reduce miss-rate, some options are: (1) Larger block size (compulsory), (2) Bigger cache
(capacity), (3) Higher associativity (conflict), (4) Compiler techniques to reduce memory accesses
and cache misses (all miss types), (5) Hardware prefetching (all miss types), and (6) Software
prefetching (all miss types).

C) The virtual memory system can cause problems since a guest OS should not be allowed to
modify page tables directly. Thus, the VMM must trap any attempt by the guest OS to change its page
table. This is commonly accomplished by write protecting the page tables and letting the VMM tell
the hardware to use a shadow page table instead of the guest OS page tables.

D) Redundant Array of Inexpensive (Independent) Disks. See book, pages 362-366.

Assignment 5D

A) Some factors that limit the exploitable ILP (book Section 3.2):

Factor Comment

Window size (the size of
buffers to keep track of
instructions)

At small window sizes, the processor simply cannot see the future
instructions that could have been issued in parallel.

Branch, jump prediction It is hard and expensive to reduce the miss prediction rate beyond a
few percent. Misspeculations reduce the exploitable ILP.

Finite number of registers Registers are needed to store temporary results. This can limit the
amount of parallel work possible.

Imperfect alias analysis If false dependencies through memory and name dependencies can be
detected, more instructions can be issued in parallel. However, this is
sometimes impractically complex.

B) To realize SMT, we need to have a per-thread renaming table, having separate PC registers,
and provide the capability for instructions from multiple threads to commit.

C) Informally, cache coherence means that a value read from the memory systems should reflect
the latest write to that same memory location. For an example of what happens when cache coherence
is missing, refer to the book, Figure 4.3 (page 206).

D) The correct connections:

 A 4
 B 6
 C 13
 D 7
 E 1
 F 2
 G 8
 H 12
 I 5
 J 14
 K 11
 L 9 or L 3
 M 3 or M 9
 N 10

Note: 3 and 9 is equivalent

	Solutions exam 2008-12-18
	Assignment 1
	Assignment 2
	Assignment 3
	Assignment 4
	Assignment 5D

