Inst.: Data- och informationsteknik
Kursnamn: Logic in Computer Science
Examinator: Thierry Coquand
Kurs: DIT201/DAT060
Datum: 2018-10-30 No help documents
Telefonvakt: akn. 1030
All answers and solutions must be carefully motivated!
total $60 ; \geq 28: 3, \geq 38: 4, \geq 50: 5$
total $60 ; \geq 28: G, \geq 42$: VG

All answers must be carefully motivated.

1. Give proofs in natural deduction of the following sequents:
(a) (3p) $p \rightarrow q, r \rightarrow s, p \rightarrow r \vdash p \rightarrow r \wedge s$

Solution:

1.	$p \rightarrow q$	premise
2.	$r \rightarrow s$	premise
3.	$p \rightarrow r$	premise
4.	p	assumption
5.	r	$\rightarrow \mathrm{e}(3,4)$
6.	s	$\rightarrow \mathrm{e}(2,5)$
7.	$r \wedge s$	$\wedge \mathrm{i}(5,6)$

8. $\quad p \rightarrow r \wedge s \quad \rightarrow \mathrm{i}(4-7)$
(b) (3p) $p \vee q, p \rightarrow \neg s \vdash s \rightarrow q$

Solution:

1.	$\begin{aligned} & p \vee q \\ & p \rightarrow \neg s \end{aligned}$	premise premise
3.	s	assumption
4.	p	assumption
5.	$\neg s$	$\rightarrow \mathrm{e}(2,4)$
6.	\perp	$\rightarrow \mathrm{e}(5,3)$
7.	q	Le($6, q$)
8.	,	assumption
9.	q	Ve(1,4-7,8-8)
10.	$s \rightarrow q$	$\rightarrow \mathrm{i}(3-9)$

(c) (3p) $p \rightarrow q \vee r, p \wedge q \rightarrow r \vdash p \rightarrow r$

Solution:

2. Decide for each of the sequents below whether they are valid or not, i.e., give a proof in natural deduction or a counter-model.
(a) (3p) $q \vee p, q \rightarrow \neg r \vdash q \vee(p \wedge \neg r)$

Solution: We give a model for

$$
q \vee p, \neg q \vee \neg r, \neg q, \neg p \vee r
$$

Define \mathcal{M} as follows

$$
\begin{aligned}
A^{\mathcal{M}} & =\{0\} \\
q^{\mathcal{M}} & =\mathrm{F} \\
p^{\mathcal{M}} & =\mathrm{T} \\
r^{\mathcal{M}} & =\mathrm{T}
\end{aligned}
$$

(b) (3p) $\forall x \forall y \forall z(E(x, z) \wedge E(y, z) \rightarrow E(x, y)) \vdash \forall x \forall y(E(x, y) \rightarrow E(y, x))$

Solution: Consider the model \mathcal{M} given by

$$
\begin{aligned}
A^{\mathcal{M}} & =\{0,1\} \\
E^{\mathcal{M}} & =\{(0,0),(0,1)\}
\end{aligned}
$$

Then $(a, b) \in E^{\mathcal{M}}$ iff $a=0$. Moreover, if $a=0$ and $b=0$, then $a=b$. Hence:

$$
\mathcal{M} \models \forall x \forall y \forall z(E(x, z) \wedge E(y, z) \rightarrow E(x, y))
$$

We have $(0,1) \in E^{\mathcal{M}}$ but $(1,0) \notin E^{\mathcal{M}}$, hence $E^{\mathcal{M}}$ is not symmetric, that is,

$$
\mathcal{M} \not \vDash \forall x \forall y(E(x, y) \rightarrow E(y, x)) .
$$

(c) (3p) $\forall x \forall y(R(x, y) \rightarrow \neg R(y, x)) \vdash \forall z \neg R(z, z)$

Solution:

1. $\quad \forall x \forall y(R(x, y) \rightarrow \neg R(y, x)) \quad$ premise

2.	z_{0}	
3.	$R\left(z_{0}, z_{0}\right)$	assume
4.	$\forall y\left(R\left(z_{0}, y\right) \rightarrow \neg R\left(y, z_{0}\right)\right)$	$\forall \mathrm{e}\left(1, z_{0}\right)$
5.	$R\left(z_{0}, z_{0}\right) \rightarrow \neg R\left(z_{0}, z_{0}\right)$	$\forall \mathrm{e}\left(4, z_{0}\right)$
6.	$\neg R\left(z_{0}, z_{0}\right)$	$\rightarrow \mathrm{e}(5,3)$
7.	\perp	$\rightarrow \mathrm{e}(6,3)$
8.	$\neg R\left(z_{0}, z_{0}\right)$	$\rightarrow \mathrm{i}(3-7)$
9.	$\forall z \neg R(z, z)$	$\forall \mathrm{i}\left(2-8, z_{0}\right)$

(d) $(3 \mathrm{p}) \forall x \forall y(x=y \vee x=f(x)) \vdash \forall x x=f(x)$

Solution: We give a natural deduction proof of the sequent.

1. $\quad \forall x \forall y(x=y \vee x=f(x)) \quad$ premise

2.		
3.	$\forall y(a=y \vee a=f(a))$	$\forall \mathrm{e}(1, a)$
4.	$a=f(a) \vee a=f(a)$	$\forall \mathrm{e}(3, f(a))$
5.	$a=f(a)$	assume
6.	$a=f(a)$	assume
7.	$a=f(a)$	$\vee \mathrm{e}(4,5-5,6-6)$
8.	$\forall x x=f(x)$	$\forall \mathrm{i}(2-7, a)$

3. Give a proof in natural deduction of the following sequents:
(a) (3p) $\forall x(P(x) \rightarrow \exists y R(x, y)), \forall x \forall y(R(x, y) \rightarrow Q(x)) \vdash \forall x(P(x) \rightarrow Q(x))$

Solution:

1.	$\forall x(P(x) \rightarrow \exists y R(x, y))$	premise
2.	$\forall x \forall y(R(x, y) \rightarrow Q(x))$	premise

3.

a	
	$P(a) \rightarrow \exists y R(a, y) \quad \forall \mathrm{e}(1, a$

5. $\quad \forall y(R(a, y) \rightarrow Q(a)) \quad \forall \mathrm{e}(2, a)$
6.
7.
8.
9.
10.
11.
12.
13.

$P(a)$	assume
$\exists y R(a, y)$	$\rightarrow \mathrm{e}(4,6)$
$w R(a, w)$	assume
$R(a, w) \rightarrow Q(a)$	$\forall \mathrm{e}(5, w)$
$Q(a)$	$\rightarrow \mathrm{e}(9,8)$
$Q(a)$	$\exists \mathrm{e}(7,8-10, w)$
$P(a) \rightarrow Q(a)$	$\rightarrow \mathrm{i}(6-11)$
$\forall x(P(x) \rightarrow Q(x))$	$\forall \mathrm{i}(3-12, a)$

(b) (3p) $\forall x(P(x) \rightarrow \neg M(x)), \exists y(M(y) \wedge S(y)) \vdash \exists z(S(z) \wedge \neg P(z))$

Solution:

1.	$\forall x(P(x) \rightarrow \neg M(x))$	premise
2.	$\exists y(M(y) \wedge S(y))$	premise
3.	$w(w) \wedge S(w)$	assume
4.	$M(w)$	$\wedge \mathrm{e}_{1}(3)$
5.	$S(w)$	$\wedge \mathrm{e}_{2}(3)$
6.	$P(w) \rightarrow \neg M(w)$	$\forall \mathrm{e}(1, w)$
7.	$P(w)$	assume
8.	$\neg M(w)$	$\rightarrow \mathrm{e}(6,7)$
9.	\perp	$\rightarrow \mathrm{e}(8,4)$
10.	$\neg P(w)$	$\rightarrow \mathrm{i}(7-9)$
11.	$S(w) \wedge \neg P(w)$	$\wedge \mathrm{i}(5,10)$
12.	$\exists z(S(z) \wedge \neg P(z))$	$\exists \mathrm{i}(11, w)$
13.	$\exists z(S(z) \wedge \neg P(z))$	$\exists \mathrm{e}(2,3-12, w)$

4. Consider the language with one unary predicate symbol P and one unary function symbol f.
(a) (3p) Explain what is a model of this language.

Solution: A model \mathcal{M} of this language is given by a nonempty set $A^{\mathcal{M}}$, a subset $P^{\mathcal{M}} \subseteq A^{\mathcal{M}}$ and a function $f^{\mathcal{M}}: A^{\mathcal{M}} \rightarrow A^{\mathcal{M}}$.
(b) (3p) Explain why the following entailment is valid:

$$
\forall x(\neg P(x) \rightarrow P(f(x))) \models \exists x P(x)
$$

Solution: Let \mathcal{M} be an arbitrary model with domain A that satisfies

$$
\forall x(\neg P(x) \rightarrow P(f(x))),
$$

that is, for all $a \in A$ we have

$$
\begin{equation*}
a \notin P^{\mathcal{M}} \text { implies } f^{\mathcal{M}}(a) \in P^{\mathcal{M}} \text {. } \tag{1}
\end{equation*}
$$

Since A is non-empty, there exists $a_{0} \in A$. In case $a_{0} \in P^{\mathcal{M}}$ we immediately get $\mathcal{M} \vDash \exists x P(x)$. Otherwise, we have $a_{0} \notin P^{\mathcal{M}}$, hence by (1) we get $f^{\mathcal{M}}\left(a_{0}\right) \in P^{\mathcal{M}}$, proving $\mathcal{M} \vDash \exists x P(x)$. So in either case $\mathcal{M} \vDash \exists x P(x)$.
5. (a) (3p) Explain what is a model of LTL/CTL.

Solution: An LTL/CTL model \mathcal{M} consists of a set of states S, a binary transition relation $\rightarrow \subseteq S \times S$ without sinks (for all states $s \in S$ there exists a state $t \in S$ such that $s \rightarrow t$, that is s can transition to t) and a labelling function $L: S \rightarrow \mathcal{P}$ (Atom) mapping states $s \in S$ to sets of atoms $L(s)$.
(b) (3p) Give an example of a LTL/CTL model \mathcal{M} where we have $\mathcal{M} \vDash \mathrm{AG}$ EF p in CTL but not $\mathcal{M} \models \mathrm{GF} p$ in LTL.

Solution: Define \mathcal{M} as follows:

$$
\begin{aligned}
S^{\mathcal{M}} & =\{s, t\} \\
\rightarrow^{\mathcal{M}} & =\{(s, s),(s, t),(t, t)\} \\
L^{\mathcal{M}}(s) & =\emptyset \\
L^{\mathcal{M}}(t) & =\{p\}
\end{aligned}
$$

We have that $\mathcal{M}, t \models \mathrm{EF} p$ since $\mathcal{M}, t \models p ;$ moreover $\mathcal{M}, s \models \mathrm{EF} p$ since the state t is reachable from s. Thus either state also satisfies AG EF p.
But $\pi \not \vDash \mathrm{GF} p$ for $\pi=s \rightarrow s \rightarrow s \rightarrow \ldots$ since π never visits the sate t and $p \notin L^{\mathcal{M}}(s)$.
6. (3p) Justify the following implication: if φ and ψ are LTL formulae and $\models \mathrm{G} \psi \rightarrow \varphi$ then $\models \mathrm{G} \psi \rightarrow \mathrm{G} \varphi$. Recall that $\models \delta$ means that the formula δ is valid on all paths in all LTL models.

Solution: Assume $\pi \models \mathrm{G} \psi \rightarrow \varphi$ (1) for all paths π in all models \mathcal{M}. Let $\sigma \models \mathrm{G} \psi(2)$ for some path σ in some model. We show $\sigma \models \mathrm{G} \varphi$. So let i be some arbitrary index and we show $\sigma^{i} \models \varphi$. From (2) we have $\sigma^{j} \models \psi$ for all indices j, in particular $\sigma^{j} \models \psi$ for all indices $j \geq i$ and hence $\sigma^{i} \models \mathrm{G} \psi$. From this and (1) we get the claim $\sigma^{i} \models \varphi$.
7. We consider a language with one function symbol f. We write $f^{2}(x)$ for $f(f(x))$, $f^{3}(x)$ for $f\left(f^{2}(x)\right)$ and so on. Decide which entailment is valid:
(a) (3p) $\forall x f^{2}(x)=x \models \forall x f(x)=x$

Solution: We give a model \mathcal{M} for

$$
\forall x f^{2}(x)=x, \exists x f(x) \neq x
$$

Define \mathcal{M} as follows:

$$
\begin{aligned}
A^{\mathcal{M}} & =\{0,1\} \\
f^{\mathcal{M}}(0) & =1 \\
f^{\mathcal{M}}(1) & =0
\end{aligned}
$$

(b) (3p) $\forall x f^{3}(x)=x, \forall x f^{5}(x)=x \models \forall x f(x)=x$

Solution: We give a natural deduction proof of the sequent.

1. $\quad \forall x f^{3}(x)=x \quad$ premise
2. $\quad \forall x f^{5}(x)=x \quad$ premise
3.
4.
```
a
    \(f^{3}(a)=a \quad \forall \mathrm{e}(1, a)\)
```

5. $\quad f^{5}(a)=a \quad \forall \mathrm{e}(2, a)$
6. $\quad f^{2}(a)=a \quad=\mathrm{e}\left(4,5, f^{2}\left(_\right)=a\right)$
7.

$$
f(a)=a \quad=\mathrm{e}\left(6,4, f\left(_\right)=a\right)
$$

$$
\forall x f(x)=x \quad \forall \mathrm{i}(3-7, a)
$$

By soundness, the entailment is valid.
8. (4p) Explain why the following entailment is valid:

$$
\forall x \exists y R(x, y) \models \forall x_{1} \forall x_{2} \exists y_{1} \exists y_{2}\left(R\left(x_{1}, y_{1}\right) \wedge R\left(x_{2}, y_{2}\right) \wedge\left(x_{1}=x_{2} \rightarrow y_{1}=y_{2}\right)\right)
$$

Solution: We will show that any model \mathcal{M} that satisfies the premise also satisfies the conclusion.

To show that \mathcal{M} satisfies the conclusion we have to show that: $(*)$ for all $a_{1}, a_{2} \in$ $A^{\mathcal{M}}$ there are some $b_{1}, b_{2} \in A^{\mathcal{M}}$ such that $\left(a_{1}, b_{1}\right) \in R^{\mathcal{M}}$ and $\left(a_{2}, b_{2}\right) \in R^{\mathcal{M}}$ and if $a_{1}=a_{2}$ then $b_{1}=b_{2}$.
So let $a_{1}, a_{2} \in A^{\mathcal{M}}$ be two arbitrary elements, from $\mathcal{M} \models \forall x \exists y R(x, y)$ we know there exists a $b_{1} \in A^{\mathcal{M}}$ such that $\left(a_{1}, b_{1}\right) \in R^{\mathcal{M}}$. Now we have two cases:

- if $a_{1}=a_{2}$ then we also have $\left(a_{2}, b_{1}\right) \in R^{\mathcal{M}}$, so we can choose $b_{2}=b_{1}$ to satisfy all the conditions in (*);
- if $a_{1} \neq a_{2}$ then we use again that $\mathcal{M} \models \forall x \exists y R(x, y)$ to obtain that there is a $b_{2} \in A^{\mathcal{M}}$ such that $\left(a_{2}, b_{2}\right) \in R^{\mathcal{M}}$, and since the implication at the end of the formula has a false premise, this is again sufficient to satisfy the conditions in (*).

9. We consider a language with one relation symbol R. A model \mathcal{M} is given by a nonempty set $A^{\mathcal{M}}$ and an interpretation $R^{\mathcal{M}} \subseteq A^{\mathcal{M}} \times A^{\mathcal{M}}$. We recall that a strict order relation is a model for the two formulae

$$
\psi_{1}=\forall x \neg R(x, x) \quad \psi_{2}=\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \rightarrow R(x, z))
$$

We want to analyse the following condition on models:
W There is no infinite sequence a_{0}, a_{1}, \ldots of elements of $A^{\mathcal{M}}$ such that $\left(a_{n+1}, a_{n}\right) \in$ $R^{\mathcal{M}}$ for all $n \in \mathbb{N}$.
(a) (2p) Give one example of a model satisfying this condition \mathbf{W} and one example of a model not satisfying this condition.

Solution: A model \mathcal{M} satisfying \mathbf{W} is given by $A^{\mathcal{M}}=\mathbb{N}$ and $R^{\mathcal{M}}=$ $\{(m, n) \mid m<n\}$, as any sequence will eventually reach 0 and will not be able to continue further.
Instead a model \mathcal{M}^{\prime} that does not satisfy \mathbf{W} is given by $A^{\mathcal{M}^{\prime}}=\mathbb{Z}$ and $R^{\mathcal{M}^{\prime}}=\{(i, j) \mid i<j\}$ because in the integers we can keep finding smaller and smaller elements.
(b) (3p) Explain why any model of ψ_{1}, ψ_{2} where $A^{\mathcal{M}}$ is finite has to satisfy this condition.

Solution: Given a sequence a_{0}, a_{1}, \ldots of elements related by $R^{\mathcal{M}}$ as in \mathbf{W}, we want to show that there cannot be repetitions, because then by finiteness of $A^{\mathcal{M}}$ this sequence must be finite.
Because of $\mathcal{M} \models \psi_{2}$ we have $\left(a_{n+k+1}, a_{n}\right) \in R^{\mathcal{M}}$ for all $n, k \in \mathbb{N}$. This means that every element of the sequence is related by $R^{\mathcal{M}}$ to all those that come
before. Because of $\mathcal{M} \models \psi_{1}$ we have that $R^{\mathcal{M}}$ does not relate equal elements, so in conclusion no element of $A^{\mathcal{M}}$ appears twice in the sequence.
(c) (3p) Explain why there is no predicate logic formula ψ_{3} such that \mathcal{M} is a model of ψ_{1}, ψ_{2} satisfying the condition \mathbf{W} if and only if \mathcal{M} is a model of ψ_{1}, ψ_{2} satisfying ψ_{3}. (Hint: Use the Compactness Theorem)

Solution: We show that if such a formula ψ_{3} exists we can reach a contradiction.
Let us define $\Psi=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$. Also consider the set of formulas $\Delta=$ $\left\{R\left(c_{n+1}, c_{n}\right) \mid n \in \mathbb{N}\right\}$, where each c_{n} is a new constant for each $n \in \mathbb{N}$. We have that if $\mathcal{M} \vDash \Delta$ then \mathcal{M} cannot satisfy \mathbf{W} and hence Ψ, because $c_{0}^{\mathcal{M}}, c_{1}^{\mathcal{M}}, \ldots$ is an infinite sequence of elements related by $R^{\mathcal{M}}$.
We derive a contradiction with the paragraph above by showing that there is a model that satisfies $\Psi \cup \Delta$. We do so by the compactness theorem.
To satisfy the premise of the compactness theorem we have to show that every finite subset Γ_{0} of $\Psi \cup \Delta$ has a model. If Γ_{0} is finite then the set of all mentioned constants $C=\bigcup\left\{\left\{c_{n+1}, c_{n}\right\} \mid R\left(c_{n+1}, c_{n}\right) \in \Gamma_{0}, n \in \mathbb{N}\right\}$ is finite. We create a model \mathcal{M} such that $A^{\mathcal{M}}=C, c_{n}^{\mathcal{M}}=c_{n}$ and $R^{\mathcal{M}}=\left\{\left(c_{n+k+1}, c_{n}\right) \mid\right.$ $\left.c_{n+k+1}, c_{n} \in C, n, k \in \mathbb{N}\right\}$. Then $\mathcal{M} \models \Gamma_{0}$ because it models the constants c_{n} and the relations on them by construction, it models ψ_{1} and ψ_{2} because $R^{\mathcal{M}}$ can be verified to be a total order on the constants, and it models ψ_{3} because $A^{\mathcal{M}}$ is finite and by (b) any model with a finite universe satisfies \mathbf{W}.

Good Luck!

Simon and Thierry

