Inst.: Data- och informationsteknik Kursnamn: Logic in Computer Science Examinator: Thierry Coquand Kurs: DIT201/DAT060 Datum: 2018-10-30 No help documents Telefonvakt: akn. 1030 All answers and solutions must be carefully motivated! total 60; \geq 28: 3, \geq 38: 4, \geq 50: 5 total 60; \geq 28: G, \geq 42: VG All answers ${\bf must}$ be carefully motivated.

- 1. Give proofs in natural deduction of the following sequents:
 - (a) (3p) $p \to q, r \to s, p \to r \vdash p \to r \land s$

Solution:				
	1.	$p \to q$	premise	
	2.	$r \rightarrow s$	premise	
	3.	$p \rightarrow r$	premise	
	4.	p	assumption	
	5.	r	$\rightarrow e(3,4)$	
	6.	s	$\rightarrow e(2,5)$	
	7.	$r \wedge s$	$\wedge i(5,6)$	
	8.	$p \to r \wedge s$	$\rightarrow i(4-7)$	

(b) (3p) $p \lor q, p \to \neg s \vdash s \to q$

Solution:				
	1.	$p \vee q$	premise	
	2.	$p \to \neg s$	premise	
	3.	s	assumption	
	4.	p	assumption	
	5.	$\neg s$	$\rightarrow e(2,4)$	
	6.	\perp	$\rightarrow e(5,3)$	
	7.	q	$\perp e(6,q)$	
	8.	q	assumption	
	9.	q	$\vee e(1,4-7,8-8)$	
	10.	$s \to q$	$\rightarrow i(3-9)$	

(c)	(3p) $p \to q \lor r, p \land q \to r \vdash p \to r$
	Solution:

Solution:				
	1.	$p \to q \vee r$	premise	
	2.	$p \wedge q \to r$	premise	
	3.	p	assumption]
	4.	$q \vee r$	$\rightarrow e(1,3)$	
	5.	q	assumption	
	6.	$p \wedge q$	$\wedge i(3,5)$	
	7.	r	$\rightarrow e(2,6)$	
	8.	r	assumption	
	9.	r	$\vee e(4,5-7,8-8)$	
	10.	$p \rightarrow r$	$\rightarrow i(3-9)$	

- 2. Decide for each of the sequents below whether they are valid or not, i.e., give a proof in natural deduction or a counter-model.
 - (a) (3p) $q \lor p, q \to \neg r \vdash q \lor (p \land \neg r)$

Solution: We give a model for

 $q \lor p, \neg q \lor \neg r, \neg q, \neg p \lor r$

Define \mathcal{M} as follows

$$A^{\mathcal{M}} = \{0\}$$
$$q^{\mathcal{M}} = F$$
$$p^{\mathcal{M}} = T$$
$$r^{\mathcal{M}} = T$$

(b) (3p) $\forall x \forall y \forall z (E(x, z) \land E(y, z) \to E(x, y)) \vdash \forall x \forall y (E(x, y) \to E(y, x))$

Solution: Consider the model
$$\mathcal{M}$$
 given by

$$\begin{aligned} & A^{\mathcal{M}} = \{0, 1\} \\ & E^{\mathcal{M}} = \{(0, 0), (0, 1)\} \end{aligned}$$
Then $(a, b) \in E^{\mathcal{M}}$ iff $a = 0$. Moreover, if $a = 0$ and $b = 0$, then $a = b$.
Hence:
 $\mathcal{M} \models \forall x \forall y \forall z (E(x, z) \land E(y, z) \rightarrow E(x, y))$
We have $(0, 1) \in E^{\mathcal{M}}$ but $(1, 0) \notin E^{\mathcal{M}}$, hence $E^{\mathcal{M}}$ is not symmetric, that is,
 $\mathcal{M} \not\models \forall x \forall y (E(x, y) \rightarrow E(y, x)).$

(c) (3p) $\forall x \forall y (R(x,y) \to \neg R(y,x)) \vdash \forall z \neg R(z,z)$

Solution:		
1.	$\forall x \forall y \left(R(x,y) \to \neg R(y,x) \right)$	premise
2.		
3.	$R(z_0, z_0)$	assume
4.	$ \qquad \qquad \forall y \left(R(z_0, y) \to \neg R(y, z_0) \right) $	$\forall \mathbf{e}(1,z_0)$
5.	$R(z_0, z_0) \to \neg R(z_0, z_0)$	$\forall \mathbf{e}(4, z_0)$
6.	$ \qquad \neg R(z_0, z_0) $	$\rightarrow e(5,3)$
7.		$\rightarrow e(6,3)$
8.	$\neg R(z_0, z_0)$	$\rightarrow i(3-7)$
9.	$\forall z \neg R(z, z)$	$\forall i(2-8,z_0)$

(d) (3p)
$$\forall x \forall y (x = y \lor x = f(x)) \vdash \forall x x = f(x)$$

Solution:	We g	e give a natural deduction proof of the sequent.				
	1.	$\forall x \forall y (x = y \lor x = f(x))$	premise			
	2.	a				
	3.	$\forall y (a = y \lor a = f(a))$	$\forall \mathbf{e}(1,a)$			
	4.	$a = f(a) \lor a = f(a)$	$\forall \mathbf{e}(3, f(a))$			
	5.	a = f(a)	assume			
	6.	a = f(a)	assume			
	7.	a = f(a)	$\vee e(4, 5-5, 6-6)$			
	8.	$\forall x x = f(x)$	$\forall i(2-7,a)$			

3. Give a proof in natural deduction of the following sequents:

(a) (3p) $\forall x (P(x) \to \exists y R(x, y)), \forall x \forall y (R(x, y) \to Q(x)) \vdash \forall x (P(x) \to Q(x)) \vdash (P(x) $	Q(x))
---	-------

Solution:			
1.	$\forall x \left(P(x) \to \exists y R(x, y) \right)$	premise	
2.	$\forall x \forall y \left(R(x,y) \to Q(x) \right)$	premise	
3.	a]
4.	$P(a) \to \exists y R(a, y)$	$\forall \mathbf{e}(1,a)$	
5.	$\forall y \left(R(a, y) \to Q(a) \right)$	$\forall \mathbf{e}(2,a)$	
6.	P(a)	assume	
7.	$\exists y \ R(a, y)$	$\rightarrow e(4,6)$	
8.	w R(a,w)	assume	
9.	$ \qquad R(a,w) \to Q(a) $	$\forall \mathbf{e}(5,w)$	
10.	Q(a)	$\rightarrow e(9,8)$	
11.	Q(a)	$\exists e(7,8-10,w)$	
12.	$P(a) \to Q(a)$	$\rightarrow i(6-11)$	
13.	$\forall x \left(P(x) \to Q(x) \right)$	$\forall i(3-12,a)$	-

(b) (3p)
$$\forall x (P(x) \to \neg M(x)), \exists y (M(y) \land S(y)) \vdash \exists z (S(z) \land \neg P(z))$$

Solution:				
	1.	$\forall x \left(P(x) \to \neg M(x) \right)$	premise	
	2.	$\exists y \left(M(y) \land S(y) \right)$	premise	
	3.	$w M(w) \wedge S(w)$	assume	
	4.	M(w)	$\wedge e_1(3)$	
	5.	S(w)	$\wedge e_2(3)$	
	6.	$P(w) \to \neg M(w)$	$\forall \mathbf{e}(1,w)$	
	7.	P(w)	assume	
	8.	$\neg M(w)$	$\rightarrow e(6,7)$	
	9.	\perp	$\rightarrow e(8,4)$	
	10.	$\neg P(w)$	$\rightarrow i(7-9)$	
	11.	$S(w) \land \neg P(w)$	$\wedge i(5,10)$	
	12.	$\exists z \left(S(z) \land \neg P(z) \right)$	$\exists i(11,w)$	
	13.	$\exists z \left(S(z) \land \neg P(z) \right)$	$\exists e(2,3-12,w)$	

- 4. Consider the language with one unary predicate symbol ${\cal P}$ and one unary function symbol f.
 - (a) (3p) Explain what is a model of this language.

Solution: A model \mathcal{M} of this language is given by a nonempty set $A^{\mathcal{M}}$, a subset $P^{\mathcal{M}} \subseteq A^{\mathcal{M}}$ and a function $f^{\mathcal{M}} : A^{\mathcal{M}} \to A^{\mathcal{M}}$.

(b) (3p) Explain why the following entailment is valid:

$$\forall x \left(\neg P(x) \rightarrow P(f(x)) \right) \models \exists x P(x)$$

Solution: Let \mathcal{M} be an arbitrary model with domain A that satisfies

$$\forall x \, (\neg P(x) \to P(f(x))),$$

that is, for all $a \in A$ we have

$$a \notin P^{\mathcal{M}} \text{ implies } f^{\mathcal{M}}(a) \in P^{\mathcal{M}}.$$
 (1)

Since A is non-empty, there exists $a_0 \in A$. In case $a_0 \in P^{\mathcal{M}}$ we immediately get $\mathcal{M} \models \exists x P(x)$. Otherwise, we have $a_0 \notin P^{\mathcal{M}}$, hence by (1) we get $f^{\mathcal{M}}(a_0) \in P^{\mathcal{M}}$, proving $\mathcal{M} \models \exists x P(x)$. So in either case $\mathcal{M} \models \exists x P(x)$.

5. (a) (3p) Explain what is a model of LTL/CTL.

Solution: An LTL/CTL model \mathcal{M} consists of a set of states S, a binary transition relation $\to \subseteq S \times S$ without sinks (for all states $s \in S$ there exists a state $t \in S$ such that $s \to t$, that is s can transition to t) and a labelling function $L: S \to \mathcal{P}(\mathsf{Atom})$ mapping states $s \in S$ to sets of atoms L(s).

(b) (3p) Give an example of a LTL/CTL model \mathcal{M} where we have $\mathcal{M} \models \operatorname{AG} \operatorname{EF} p$ in CTL but not $\mathcal{M} \models \operatorname{GF} p$ in LTL.

Solution: Define \mathcal{M} as follows:

$$S^{\mathcal{M}} = \{s, t\}$$

$$\rightarrow^{\mathcal{M}} = \{(s, s), (s, t), (t, t)\}$$

$$L^{\mathcal{M}}(s) = \emptyset$$

$$L^{\mathcal{M}}(t) = \{p\}$$

We have that $\mathcal{M}, t \models \text{EF } p$ since $\mathcal{M}, t \models p$; moreover $\mathcal{M}, s \models \text{EF } p$ since the state t is reachable from s. Thus either state also satisfies AG EF p. But $\pi \not\models \text{G F } p$ for $\pi = s \rightarrow s \rightarrow s \rightarrow \ldots$ since π never visits the sate t and $p \notin L^{\mathcal{M}}(s)$. 6. (3p) Justify the following implication: if φ and ψ are LTL formulae and $\models G \psi \rightarrow \varphi$ then $\models G \psi \rightarrow G \varphi$. Recall that $\models \delta$ means that the formula δ is valid on all paths in all LTL models.

Solution: Assume $\pi \models G \psi \rightarrow \varphi$ (1) for all paths π in all models \mathcal{M} . Let $\sigma \models G \psi$ (2) for some path σ in some model. We show $\sigma \models G \varphi$. So let *i* be some arbitrary index and we show $\sigma^i \models \varphi$. From (2) we have $\sigma^j \models \psi$ for all indices *j*, in particular $\sigma^j \models \psi$ for all indices $j \ge i$ and hence $\sigma^i \models G \psi$. From this and (1) we get the claim $\sigma^i \models \varphi$.

- 7. We consider a language with one function symbol f. We write $f^2(x)$ for f(f(x)), $f^3(x)$ for $f(f^2(x))$ and so on. Decide which entailment is valid:
 - (a) (3p) $\forall x f^2(x) = x \models \forall x f(x) = x$

Solution: We give a model \mathcal{M} for

$$\forall x \, f^2(x) = x, \exists x \, f(x) \neq x$$

Define ${\mathcal M}$ as follows:

$$A^{\mathcal{M}} = \{0, 1\}$$
$$f^{\mathcal{M}}(0) = 1$$
$$f^{\mathcal{M}}(1) = 0$$

(b) (3p) $\forall x f^3(x) = x, \forall x f^5(x) = x \models \forall x f(x) = x$

Solution:	We give a natural deduction proof of the sequent.			
	1.	$\forall x f^3(x) = x$	premise	
	2.	$\forall x f^5(x) = x$	premise	
	3.	a		
	4.	$f^3(a) = a$	$\forall \mathrm{e}(1,a)$	
	5.	$f^5(a) = a$	$\forall \mathbf{e}(2,a)$	
	6.	$f^2(a) = a$	$= \mathbf{e}(4,5,f^2(_) = a)$	
	7.	f(a) = a	$= e(6,4,f(_) = a)$	
	8.	$\forall x f(x) = x$	orall i(3-7,a)	
By soundness, the entailment is valid.				

8. (4p) Explain why the following entailment is valid:

 $\forall x \exists y \ R(x,y) \models \forall x_1 \forall x_2 \exists y_1 \exists y_2 \left(R(x_1,y_1) \land R(x_2,y_2) \land (x_1 = x_2 \to y_1 = y_2) \right)$

Solution: We will show that any model \mathcal{M} that satisfies the premise also satisfies the conclusion.

To show that \mathcal{M} satisfies the conclusion we have to show that: (*) for all $a_1, a_2 \in A^{\mathcal{M}}$ there are some $b_1, b_2 \in A^{\mathcal{M}}$ such that $(a_1, b_1) \in R^{\mathcal{M}}$ and $(a_2, b_2) \in R^{\mathcal{M}}$ and if $a_1 = a_2$ then $b_1 = b_2$.

So let $a_1, a_2 \in A^{\mathcal{M}}$ be two arbitrary elements, from $\mathcal{M} \models \forall x \exists y R(x, y)$ we know there exists a $b_1 \in A^{\mathcal{M}}$ such that $(a_1, b_1) \in R^{\mathcal{M}}$. Now we have two cases:

- if $a_1 = a_2$ then we also have $(a_2, b_1) \in \mathbb{R}^{\mathcal{M}}$, so we can choose $b_2 = b_1$ to satisfy all the conditions in (*);
- if $a_1 \neq a_2$ then we use again that $\mathcal{M} \models \forall x \exists y R(x, y)$ to obtain that there is a $b_2 \in A^{\mathcal{M}}$ such that $(a_2, b_2) \in R^{\mathcal{M}}$, and since the implication at the end of the formula has a false premise, this is again sufficient to satisfy the conditions in (*).
- 9. We consider a language with one relation symbol R. A model \mathcal{M} is given by a nonempty set $A^{\mathcal{M}}$ and an interpretation $R^{\mathcal{M}} \subseteq A^{\mathcal{M}} \times A^{\mathcal{M}}$. We recall that a strict order relation is a model for the two formulae

$$\psi_1 = \forall x \neg R(x, x) \qquad \psi_2 = \forall x \forall y \forall z \left(R(x, y) \land R(y, z) \to R(x, z) \right)$$

We want to analyse the following condition on models:

- **W** There is no infinite sequence a_0, a_1, \ldots of elements of $A^{\mathcal{M}}$ such that $(a_{n+1}, a_n) \in \mathbb{R}^{\mathcal{M}}$ for all $n \in \mathbb{N}$.
- (a) (2p) Give one example of a model satisfying this condition **W** and one example of a model not satisfying this condition.

Solution: A model \mathcal{M} satisfying \mathbf{W} is given by $A^{\mathcal{M}} = \mathbb{N}$ and $R^{\mathcal{M}} = \{(m,n) \mid m < n\}$, as any sequence will eventually reach 0 and will not be able to continue further. Instead a model \mathcal{M}' that does not satisfy \mathbf{W} is given by $A^{\mathcal{M}'} = \mathbb{Z}$ and $R^{\mathcal{M}'} = \{(i,j) \mid i < j\}$ because in the integers we can keep finding smaller and smaller elements.

(b) (3p) Explain why any model of ψ_1, ψ_2 where $A^{\mathcal{M}}$ is finite has to satisfy this condition.

Solution: Given a sequence a_0, a_1, \ldots of elements related by $R^{\mathcal{M}}$ as in \mathbf{W} , we want to show that there cannot be repetitions, because then by finiteness of $A^{\mathcal{M}}$ this sequence must be finite.

Because of $\mathcal{M} \models \psi_2$ we have $(a_{n+k+1}, a_n) \in R^{\mathcal{M}}$ for all $n, k \in \mathbb{N}$. This means that every element of the sequence is related by $R^{\mathcal{M}}$ to all those that come

before. Because of $\mathcal{M} \models \psi_1$ we have that $R^{\mathcal{M}}$ does not relate equal elements, so in conclusion no element of $A^{\mathcal{M}}$ appears twice in the sequence.

(c) (3p) Explain why there is no predicate logic formula ψ_3 such that \mathcal{M} is a model of ψ_1, ψ_2 satisfying the condition **W** if and only if \mathcal{M} is a model of ψ_1, ψ_2 satisfying ψ_3 . (Hint: Use the Compactness Theorem)

Solution: We show that if such a formula ψ_3 exists we can reach a contradiction.

Let us define $\Psi = \{\psi_1, \psi_2, \psi_3\}$. Also consider the set of formulas $\Delta = \{R(c_{n+1}, c_n) \mid n \in \mathbb{N}\}$, where each c_n is a new constant for each $n \in \mathbb{N}$. We have that if $\mathcal{M} \models \Delta$ then \mathcal{M} cannot satisfy \mathbf{W} and hence Ψ , because $c_0^{\mathcal{M}}, c_1^{\mathcal{M}}, \ldots$ is an infinite sequence of elements related by $R^{\mathcal{M}}$.

We derive a contradiction with the paragraph above by showing that there is a model that satisfies $\Psi \cup \Delta$. We do so by the compactness theorem.

To satisfy the premise of the compactness theorem we have to show that every finite subset Γ_0 of $\Psi \cup \Delta$ has a model. If Γ_0 is finite then the set of all mentioned constants $C = \bigcup \{ \{c_{n+1}, c_n\} \mid R(c_{n+1}, c_n) \in \Gamma_0, n \in \mathbb{N} \}$ is finite. We create a model \mathcal{M} such that $A^{\mathcal{M}} = C$, $c_n^{\mathcal{M}} = c_n$ and $R^{\mathcal{M}} = \{(c_{n+k+1}, c_n) \mid c_{n+k+1}, c_n \in C, n, k \in \mathbb{N} \}$. Then $\mathcal{M} \models \Gamma_0$ because it models the constants c_n and the relations on them by construction, it models ψ_1 and ψ_2 because $R^{\mathcal{M}}$ can be verified to be a total order on the constants, and it models ψ_3 because $A^{\mathcal{M}}$ is finite and by (b) any model with a finite universe satisfies \mathbf{W} .

Good Luck!

Simon and Thierry