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All answers must be carefully motivated.

1. Give proofs in natural deduction of the following sequents:

(a) (3p) p→ (q ∧ r) ` (p→ q) ∧ (p→ r)

Solution:
1. p→ (q ∧ r) premise

2. p assumption

3. q ∧ r →e(1,2)

4. q ∧e1(3)

5. p→ q →i(2–4)

6. p assumption

7. q ∧ r →e(1,6)

8. r ∧e2(7)

9. p→ r →i(6–8)

10. (p→ q) ∧ (p→ r) ∧i(5,9)

(b) (3p) ¬(p ∨ q) ` ¬p ∧ ¬q

Solution:
1. ¬(p ∨ q) premise

2. p assumption

3. p ∨ q ∨i1(2)

4. ⊥ →e(1,3)

5. ¬p →i(2–4)

6. q assumption

7. p ∨ q ∨i2(6)

8. ⊥ →e(1,7)

9. ¬p →i(6–8)

10. ¬p ∧ ¬q ∧i(5,9)

(c) (3p) p ∨ (q → r) ` (p ∨ q)→ (p ∨ r)

Solution:
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1. p ∨ (q → r) premise

2. p ∨ q assumption

3. p assumption

4. p ∨ r ∨i1(3)

5. q assumption

6. p assumption

7. p ∨ r ∨i1(6)

8. q → r assumption

9. r →e(8,5)

10. p ∨ r ∨i2(9)

11. p ∨ r ∨e(1,6–7,8–10)

12. p ∨ r ∨e(2,3–4,5–11)

13. (p ∨ q)→ (p ∨ r) →i(2–12)

2. Let P , S and M be unary predicates and R a binary predicate. Decide for each of the
sequents below whether they are valid or not, i.e., give a proof in natural deduction
or a counter-model.

(a) (3p) ∃x (P (x) ∧ ¬M(x)),∃y (M(y) ∧ ¬S(y)) ` ∃z (P (z) ∧ ¬S(z))

Solution: Consider the model M with universe A = {0, 1} and PM =
SM = {0} and MM = {1}, and l mapping all variables to 0. M, l satisfies
the first premise since PM ∩ (A−MM) = {0} 6= ∅. Likewise, M, l satisfies
the second premise since MM ∩ (A − SM) = {1} 6= ∅. But M, l does not
satisfy ∃z (P (z)∧¬S(z)) since PM ∩ (A− SM) = PM ∩ (A− PM) = ∅. By
soundness the sequent is thus not valid.

(b) (3p) ∀x¬R(x, x) ` ∀x ∀y (R(x, y)→ ¬R(y, x))

Solution: Consider the model M with universe A = {0, 1} and RM =
{(0, 1), (1, 0)}. Clearly, M |=l ∀x¬R(x, x) for any look-up function l as
(0, 0) /∈ RM and (1, 1) /∈ RM. But (0, 1) ∈ RM and (1, 0) ∈ RM so M 6|=l

∀x∀y (R(x, y)→ ¬R(y, x)). Thus, by the Soundness Theorem, ∀x¬R(x, x) 6`
∀x ∀y (R(x, y)→ ¬R(y, x)).

(c) (3p) ∀x (M(x)→ ¬P (x)), ∃y (P (y) ∧ S(y)) ` ∃z (S(z) ∧ ¬M(z))

Solution:
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1. ∀x (M(x)→ ¬P (x)) premise

2. ∃y (P (y) ∧ S(y)) premise

3. y0 P (y0) ∧ S(y0) assumption

4. M(y0) assumption

5. M(y0)→ ¬P (y0) ∀e(1,y0)

6. ¬P (y0) →e(5,4)

7. P (y0) ∧e1(3)

8. ⊥ →e(6,7)

9. ¬M(y0) →i(4–8)

10. S(y0) ∧e2(3)

11. S(y0) ∧ ¬M(y0) ∧i(10,9)

12. ∃z (S(z) ∧ ¬M(z)) ∃i(11,y0)

13. ∃z (S(z) ∧ ¬M(z)) ∃e(2,3–12)

(d) (3p) ∀x ∀y ∀z ((R(x, z) ∧R(y, z))→ R(x, y)) ` ∀xR(x, x)

Solution: Consider the model M with universe A = {0} and RM = ∅,
and look-up function l(x) = 0. Since RM = ∅, M |=l ∀x∀y ∀z ((R(x, z) ∧
R(y, z))→ R(x, y)). Moreover, (0, 0) /∈ RM, so M 6|=l ∀xR(x, x). Thus, by
soundness, the sequent is not valid.

3. (3p) We fix a language with a relation symbol R. Describe one model which validates
simultaneously all the following formulae

∀x¬R(x, x) ∀x∀y ∀z ((R(x, y) ∧R(y, z))→ R(x, z))

∀x ∃y R(x, y) ∃x ∀y (R(x, y) ∨ x = y)

∀x∀y (R(x, y)→ ∃z (R(x, z) ∧R(z, y)))

Solution: Consider the relation < on the set of non-negative rational numbers
Q ∩ [0,+∞): it is strict, transitive, it is dense (since a < a+b

2
< b for a < b in Q)

and satisfies a < a+ 1 for a ∈ Q. Moreover it has a least element 0.

4. (a) (3p) Explain what is a model of CTL.

Solution: A CTL modelM consists of a set of states S, a binary transition
relation → ⊆ S × S without sinks (for all states s ∈ S there exists a state
t ∈ S such that s→ t, that is s can transition to t) and a labelling function
L : S → P(Atom) mapping states s ∈ S to sets of atoms L(s).
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(b) (3p) Explain why the following CTL formula is valid (AG ((q → p) ∧ (q →
EX q)))→ (q → EGp).

Solution: LetM = (S,→, L) be a CTL model and s ∈ S a state satisfying
both AG ((q → p) ∧ (q → EX q)) and q. We show that s satisfies EG p by
recursively constructing a path π which starts in s and satisfies q globally
because then, by assumption, π also satisfies q → p and in particular p
globally. Let i ∈ N be an index. If i = 0, then we define π(i) to be s and,
by assumption, π(i) satisfies q. If i = j + 1 for some index j ∈ N, then, by
induction hypothesis, π(j) is a state which satisfies q and, by assumption,
there exists a state t with a transition from π(j) which satisfies q. We define
π(i) to be t.

5. (a) (2p) Explain why the following LTL formula is not valid G(p→ q)∨G(q → p)

Solution: We give a counterexample. In the following model

ps0 q s1

the state s0 does not satisfy p → q and the state s1 does not satisfy q → p.
Therefore, the path π = (s0, s1, s1, s1, . . .) does neither satisfy p → q nor
q → p globally, which means that there exists a path which does not satisfy
G (p→ q) ∨G (q → p).

(b) (2p) Does the same hold for the formula G((p→ q) ∨ (q → p))?

Solution: No. The formula (p → q) ∨ (q → p) is propositionally valid and
thus G ((p→ q) ∨ (q → p)) is a law of LTL.

6. Given W = (∀xR(x, x))→ ∀x∀y∀z (R(x, y) ∨R(y, z) ∨R(z, x)), explain why

(a) (3p) the formula W is valid in any model with a domain/universe having at
most 2 elements

Solution: Let M be a model with universe A with #A ≤ 2 and RM ⊇
{(x, x)|x ∈ A}, l a lookup table and x0, y0, z0 ∈ A arbitrary elements of the
domain. Then, by the first assumption and the pigeonhole principle, at least
two of the three elements must be identical and, by the second assumption,
these two elements are related by RM so thatM |=l[x 7→x0,y 7→y0,z 7→z0] R(x, y)∨
R(y, z) ∨R(z, x). Since the elements x0, y0, and z0 were arbitrary, M and l
satisfy W .

(b) (3p) the formula W is not valid in general
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Solution: We give a counterexampleM, l. Let a, b, and c be three pairwise
distinct elements, and take l to be the constant function mapping all variables
to a, the universe to be the set {a, b, c} and RM to be the identity relation,
that is {(a, a), (b, b), (c, c)}. Then, the elements a, b, c are also pairwise
unrelated so that M |=l[x 7→a,y 7→b,z 7→c] ¬R(x, y) ∧ ¬R(y, z) ∧ ¬R(z, x) and
because M |=l ∀xR(x, x) the formula W is not satisfied by M and l.

7. (4p) We suppose given 8 atomic propositions A,B,C,D,E, F,G,H. We know that
exactly one of A,B,C,D and exactly one of E,F,G,H is true. We also know the
following

1. A ∨ E ∨G
2. A ∨B ∨ F
3. B ∨ C ∨G
4. C ∨ E ∨ F

Which of A,B,C,D and of E,F,G,H is true (and why)?

Solution: If A is true, then B,C, and D are false, so G and E ∨ F need to be
true, which contradicts the assumption that exactly one of E,F,G,H is true. So
A must be false and we know

E ∨G,B ∨ F,B ∨ C ∨G,C ∨ E ∨ F ¬A

If G is true, then E and F are false, so B and C need to be true, which contradicts
the assumption that exactly one of A,B,C,D is true. So G must be false and we
know

E,B ∨ F,B ∨ C,C ∨ E ∨ F ¬A,¬G

So E must be true and, by the second assumption, also F and H must be false
and we know

B,B ∨ C ¬A,E,¬F,¬G,¬H

So B must be true and, by the first assumption, also C and D must be false and
we know

¬A,B,¬C,¬D,E,¬F,¬G,¬H

So assigning true to exactly B and E is the only possible satisfying valuation,
and it is indeed a satisfying valuation.
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8. (5p) Let ψ be a predicate logic formula. We assume that for any natural number
n, the formula ψ has a model with a domain/universe with more than n elements.
Explain why the formula ψ should have a model with an infinite domain/universe.

Solution: By assumption, there is a family of modelsMn indexed by n ≥ 1 such
that the universe of Mn has at least n elements and Mn |= ψ. For each n ≥ 1,
we define ϕn to be the formula ∃x1 . . . ∃xn (

∧
1≤i<j≤n xi 6= xj). The models of ϕn

are exactly those with at least n elements, so that the models of Φ = {ϕn|n ≥ 1}
are exactly those with an infinite domain/universe.

We show that ψ has a model with an infinite domain/universe by showing that
Γ = {ψ} ∪ Φ has a model. We apply the Compactness Theorem to show that Γ
has a model. Let Γ0 be a finite subset of Γ, then Φ0 = Γ0 ∩ Φ is a finite subset
of Φ and Γ0 is contained in {ψ} ∪ Φ0. Γ0 is satisfied by Mm where m ≥ 1 is the
maximum of all n with ϕn ∈ Φ0 (or 1 if Φ0 is empty), becauseMm is a model of
ψ by assumption and of Φ0 by our earlier remark.

9. Explain why the following LTL formulae are valid, i.e., satisfied on all paths of all
transition systems

(a) (3p) (F p ∧ F q)→ ((F(p ∧ F q)) ∨ F(q ∧ F p))

Solution: Let π be an arbitrary path satisfying F p∧F q, that is there exist
indices i, j ∈ N such that π(i) satisfies p and π(j) satisfies q. It is either the
case that i ≤ j or that i > j. If i ≤ j, then πi also satisfies F q so that π
actually satisfies F (p ∧ F q). If i > j, then πj also satisfies F p so that π
actually satisfies F (q∧F p). In either case, π satisfies F (p∧F q)∨F (q∧F p)
and since π was arbitrary, the formula is a law.

(b) (3p) F(p→ X p)

Solution: Let π be an arbitrary path. It is either the case that π(1) satisfies
p or not. If π(1) satisfies p, then π0 satisfies X p and in particular p→ X p
and F (p → X p). If π(1) does not satisfy p, then π1 in particular satisfies
p → X p and π0 in particular satisfies F (p → X p). Since π was arbitrary,
the formula is a law.

10. (5p) Let R(x, y) and S(x, y) be two relation symbols. We define ψ1 to be

∀x∀y ∀z ((R(x, y) ∧R(y, z))→ R(x, z))

and ψ2 to be
∀x ∀y ∀z ((R(x, y) ∧R(x, z))→ S(y, z))

and ψ3 to be
∀x ∀y (S(x, y)↔ ∃z (R(x, z) ∧R(y, z)))

where p↔ q means (p→ q) ∧ (q → p)

Show that ψ1, ψ2, ψ3 � ∀x∀y ∀z ((S(x, y) ∧ S(y, z))→ S(x, z))
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Solution: Let M be a model satisfying ψ1, ψ2, ψ3 and x0, x1, x2 ∈ A elements
such that (x0, x1), (x1, x2) ∈ SM. By the third assumption, there exist elements
y01, y12 ∈ A such that (x0, y01), (x1, y01), (x1, y12), (x2, y12) ∈ RM. Then, by the
second assumption we have that (y01, y12) ∈ SM. Again, by the third assumption,
there exists an element z012 ∈ A such that (y01, z012), (y12, z012) ∈ RM. Lastly,
by the first and third assumption, we have (x0, z012), (x2, z012) ∈ RM and then
(x0, x2) ∈ SM. Graphically,

z012

y01 y12

x0 x1 x2

Since x0, x1, and x2 were arbitrary, M satisfies ∀x∀y ∀z (S(x, y) ∧ S(y, z) →
S(x, z)).

Good Luck!

Jan and Thierry
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