Inst.: Data- och informationsteknik
Kursnamn: Logic in Computer Science
Examinator: Thierry Coquand
Kurs: DIT201/DAT060
Datum: 2016-10-25 No help documents
Telefonvakt: akn. 1030
All answers and solutions must be carefully motivated!
total 60 ; $\geq 28: 3, \geq 38: 4, \geq 50$: 5
total $60 ; \geq 28: \mathrm{G}, \geq 42$: VG

All answers must be carefully motivated.

1. Give proofs in natural deduction of the following sequents:
(a) $p \rightarrow q, q \rightarrow r, p \rightarrow s \vdash p \rightarrow(r \wedge s) \quad$ (3p)

Solution:

1.	$p \rightarrow q$	premise
2.	$q \rightarrow r$	premise
3.	$p \rightarrow s$	premise
4.	p	assumption
5.	q	$\rightarrow \mathrm{e}(1,4)$
6.	r	$\rightarrow \mathrm{e}(2,5)$
7.	s	$\rightarrow \mathrm{e}(3,4)$
8.	$r \wedge s$	$\wedge \mathrm{i}(6,7)$
9.	$p \rightarrow r \wedge s$	$\rightarrow \mathrm{i}(4-8)$

(b) $\neg(p \vee q) \vdash \neg p \wedge \neg q \quad(3 \mathrm{p})$

Solution:

1.	$\neg(p \vee q)$	premise
2.	p	assumption
3.	$p \vee q$	$\vee \mathrm{i}_{1}(2)$
4.	\perp	$\rightarrow \mathrm{e}(1,3)$
5.	$\neg p$	$\rightarrow \mathrm{i}(2-4)$
6.	q	assumption
7.	$p \vee q$	$\vee \mathrm{Vi}_{2}(6)$
8.	\perp	$\rightarrow \mathrm{e}(1,7)$
9.	$\neg q$	$\rightarrow \mathrm{i}(6-8)$
10.	$\neg p \wedge \neg q$	$\wedge \mathrm{i}(5,9)$

(c) $p \vee q \vdash \neg q \rightarrow p \quad(3 \mathrm{p})$

Solution:

1.	$p \vee q$	premise
2.	$\neg q$	assumption
3.	p	assumption
4.	q	assumption
5.	\perp	$\rightarrow \mathrm{e}(2,4)$
6.	p	$\perp \mathrm{e}(5)$
7.	p	$\vee \mathrm{e}(1,3-3,4-6)$
8.	$\neg q \rightarrow p$	$\rightarrow \mathrm{i}(2-7)$

2. Explain why the following LTL formula

$$
((\mathrm{F} p) \wedge \mathrm{F} q) \rightarrow \mathrm{F}(p \wedge q)
$$

is not valid (2p) and why the following formula is valid (3p)

$$
((\mathrm{F} p) \wedge \mathrm{F} q) \rightarrow(\mathrm{F}(p \wedge \mathrm{~F} q)) \vee \mathrm{F}(q \wedge \mathrm{~F} p)
$$

Solution:

(a) Consider the following transition system \mathcal{M} :

The path $\pi=s_{0} \rightarrow s_{1} \rightarrow s_{0} \rightarrow s_{1} \rightarrow \ldots$ alternating between s_{0} and s_{1} satisfies $\mathcal{M}, \pi \models \mathrm{F} p$ (since $\mathcal{M}, \pi^{0} \models p$) and $\mathcal{M}, \pi \models \mathrm{F} q$ (since $\mathcal{M}, \pi^{1} \models q$) but no state contains both p and q, hence $\mathcal{M}, \pi \not \vDash \mathrm{F}(p \wedge q)$.
(b) Let \mathcal{M} be a transition system and π a path in \mathcal{M} such that $\mathcal{M}, \pi \models$ $\mathrm{F} p \wedge \mathrm{~F} q$. So there are $i \geq 0$ and $j \geq 0$ with

$$
\mathcal{M}, \pi^{i} \models p \quad \text { and } \quad \mathcal{M}, \pi^{j} \models q .
$$

In case $i \leq j$, we have $\mathcal{M}, \pi^{i} \models \mathrm{~F} q$ and hence $\mathcal{M}, \pi \vDash \mathrm{F}(p \wedge \mathrm{~F} q)$. Similarly we get $\mathcal{M}, \pi \models \mathrm{F}(q \wedge \mathrm{~F} p)$ in case $j \leq i$. In either case we obtain

$$
\mathcal{M}, \pi \models \mathrm{F}(p \wedge \mathrm{~F} q) \vee \mathrm{F}(q \wedge \mathrm{~F} p)
$$

what we had to show.
3. We consider the following language: we have one binary predicate symbol R, a unary function symbol f, and a constant c.
(a) Define what a model of this language is. (3p)
(b) Explain why the formula $R(c, c) \rightarrow \forall x R(x, f(x)))$ is not derivable. (2p)

Solution:

A model M of this language consists in a set A, an interpretation R^{M} which is a subset of $A \times A$, an interpretation f^{M} which is a function $A \rightarrow A$ and an interpretation c^{M} which is an element of A
For showing that the formula $R(c, c) \rightarrow \forall x R(x, f(x)))$, it is enough, by soundness, to give a model for which this formula is not valid. We can for instance take $A=\{0,1\}$ and $c^{M}=0$ and $R^{M}=\{(0,0)\}$ and $f^{M}(0)=$ $f^{M}(1)=1$. We then have $M \models R(c, c)$ but $M \models \neg \forall x R(x, f(x))$.
4. Let P, S and M be unary predicates and R a binary predicate. Decide for each of the sequents below whether they are valid or not, i.e., give a proof in natural deduction or a counter-model. (12p)
(a) $\exists x(P(x) \wedge \neg M(x)), \exists y(M(y) \wedge \neg S(y)) \vdash \exists z(P(z) \wedge \neg S(z))$

Solution: Not valid. Take the model \mathcal{M} with domain $D=\{0,1\}$ and $P^{\mathcal{M}}=\{0\}, M^{\mathcal{M}}=\{1\}, S^{\mathcal{M}}=\{0\}$.
(b) $\forall x \neg R(x, x) \vdash \forall x \forall y(R(x, y) \rightarrow \neg R(y, x))$

Solution: Not valid. Take the model \mathcal{M} with domain $D=\{0,1\}$ and $R^{\mathcal{M}}=\{(0,1),(1,0)\}$.
(c) $\forall x \forall y(R(x, y) \rightarrow \neg R(y, x)) \vdash \forall z \neg R(z, z)$

Solution: Valid.

1.	$\forall x \forall y(R(x, y) \rightarrow \neg R(y, x))$	premise
2.	z_{0}	assumption
3.	$R\left(z_{0}, z_{0}\right)$	assumption
4.	$\forall y\left(R\left(z_{0}, y\right) \rightarrow \neg R\left(y, z_{0}\right)\right)$	$\forall \mathrm{e}\left(1, z_{0}\right)$
5.	$R\left(z_{0}, z_{0}\right) \rightarrow \neg R\left(z_{0}, z_{0}\right)$	$\forall \mathrm{e}\left(4, z_{0}\right)$
6.	$\neg R\left(z_{0}, z_{0}\right)$	$\rightarrow \mathrm{e}(5,3)$
7.	\perp	$\rightarrow \mathrm{e}(6,3)$
8.	$\neg R\left(z_{0}, z_{0}\right)$	$\rightarrow \mathrm{i}(3-7)$
9.	$\forall z \neg R(z, z)$	$\forall \mathrm{i}(2-8)$

(d) $\vdash \forall x \exists y R(x, y) \vee \forall x \exists y \neg R(x, y)$

Solution: Not valid. Take the model \mathcal{M} with domain $D=\{0,1\}$ and $R^{\mathcal{M}}=\{(1,1),(1,0)\}$.
5. Let P, Q, and R be unary predicate symbols, and f a unary function symbol. Give proofs in natural deduction of the following sequents:
(a) $\forall x(P(x) \rightarrow(Q(x) \vee R(x))), \neg \exists x(P(x) \wedge R(x)) \vdash \forall x(P(x) \rightarrow Q(x))$ (4p)

Solution:

1.	$\begin{aligned} & \forall x(P(x) \rightarrow(Q(x) \vee R(x))) \\ & \neg \exists x(P(x) \wedge R(x)) \end{aligned}$	premise premise
3.	x_{0}	assumption
4.	$P\left(x_{0}\right)$	assumption
5.	$P\left(x_{0}\right) \rightarrow\left(Q\left(x_{0}\right) \vee R\left(x_{o}\right)\right)$	$\forall \mathrm{e}\left(1, x_{0}\right)$
6.	$Q\left(x_{0}\right) \vee R\left(x_{o}\right)$	$\rightarrow \mathrm{e}(5,4)$
7.	$Q\left(x_{0}\right)$	assumption
8.	$R\left(x_{0}\right)$	assumption
9.	$P\left(x_{0}\right) \wedge R\left(x_{0}\right)$	$\wedge \mathrm{i}(4,8)$
10.	$\exists x(P(x) \wedge R(x))$	$\exists \mathrm{i}\left(9, x_{0}\right)$
11.	\perp	$\rightarrow \mathrm{e}(2,10)$
12.	$Q\left(x_{0}\right)$	$\perp \mathrm{e}(11)$
13.	$Q\left(x_{0}\right)$	$\mathrm{Ve}(6,7,8-12)$
14.	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\rightarrow \mathrm{i}(4-13)$
15.	$\forall x(P(x) \rightarrow Q(x))$	$\forall \mathrm{i}(3-14)$

(b) $\forall x(f(f(x))=x) \vdash \forall x \exists y(x=f(y)) \quad$ (4p)

Solution:

1.	$\forall x(f(f(x))=x)$	premise
2.	x_{0}	assumption
3.	$f\left(f\left(x_{0}\right)\right)=x_{0}$	$\forall \mathrm{e}\left(1, x_{0}\right)$
4.	$f\left(f\left(x_{0}\right)\right)=f\left(f\left(x_{0}\right)\right)$	$=\mathrm{i}\left(f\left(f\left(x_{0}\right)\right)\right)$
5.	$x_{0}=f\left(f\left(x_{0}\right)\right)$	$=\mathrm{e}\left(3,4, x=f\left(f\left(x_{0}\right)\right)\right)$
6.	$\exists y\left(x_{0}=f(y)\right)$	$\exists \mathrm{i}\left(5, f\left(x_{0}\right)\right)$
7.	$\forall x \exists y(x=f(y))$	$\forall \mathrm{i}(2-6)$

6. Consider the transition system $\mathcal{M}=(S, \rightarrow, L)$ where the states are $S=$ $\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}$, the transitions are $s_{0} \rightarrow s_{0}, s_{1} \rightarrow s_{0}, s_{1} \rightarrow s_{2}, s_{2} \rightarrow$ $s_{1}, s_{2} \rightarrow s_{3}, s_{3} \rightarrow s_{4}, s_{4} \rightarrow s_{3}, s_{4} \rightarrow s_{4}$, and the labeling function is given by $L\left(s_{0}\right)=L\left(s_{4}\right)=\{p\}, L\left(s_{2}\right)=\{q\}$, and $L\left(s_{1}\right)=L\left(s_{3}\right)=\emptyset$.

(a) Do we have $\mathcal{M} \models \mathrm{G}(q \rightarrow \mathrm{~F} p)$?

Solution: No. Take $\pi:=\left(s_{2}, s_{1}, s_{2}, s_{1}, \ldots\right)$ at 0 .
(b) Which are the states s that satisfy the CTL formula $\mathrm{AG}(\mathrm{EF} p)$ (i.e., where $\mathcal{M}, s \vDash \mathrm{AG}(\mathrm{EF} p))$?
Solution: All states because all states satisfy EF p.
7. A set of connectives is called adequate if for every formula of propositional logic there is an equivalent formula using only connectives from this set. Explain why $\{\wedge, \neg\}$ is adequate. (3p)

Solution:

We can define $p \vee q$ as $\neg(\neg p \wedge \neg q)$ and $p \rightarrow q$ as $\neg(p \wedge \neg q)$.
8. We fix a language with a relation symbol R. Give a model which validates all the following formulae (4p)

$$
\begin{aligned}
\forall x \neg R(x, x) \quad \forall x \forall y \forall z((R(x, y) \wedge R(y, z)) \rightarrow R(x, z)) \\
\forall x \exists y R(x, y) \quad \forall x \exists y R(y, x) \quad \forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
\end{aligned}
$$

Solution:

A model M is given by taking the domain to be the set of rationals \mathbb{Q}, or the set of reals \mathbb{R}, and R^{M} to be the set of (x, y) such that $x<y$
9. Suppose that Γ is a set of sentences (i.e., formulas without free variables) in a given language such that for any natural number $n \geq 0, \Gamma$ has a model whose domain (carrier set) has at least n elements. Show that Γ has a model whose domain is infinite. (Hint: Use the Compactness Theorem.)

Solution: We extend the language by adding constants c_{n} for each $n \in \mathbb{N}$, and let

$$
\Delta:=\Gamma \cup\left\{c_{n} \neq c_{m} \mid n, m \in \mathbb{N} \text { and } n \neq m\right\} .
$$

We now show that any finite subset $\Delta_{0} \subseteq \Delta$ has a model. Since Δ_{0} is finite we can find an $k \in \mathbb{N}$ such that

$$
\begin{equation*}
\Delta_{0} \subseteq \Gamma \cup\left\{c_{n} \neq c_{m} \mid n, m \in \mathbb{N} \text { such that } n<k, m<k, \text { and } n \neq m\right\} . \tag{1}
\end{equation*}
$$

By assumption Γ has a model \mathcal{M} with at least k elements; we can make this a model of the extended language by interpreting $c_{0}, c_{1}, \ldots, c_{k-1}$ by the k different elements in the carrier of \mathcal{M}; all the other constants $c_{n}, n \geq$ k, are interpreted by, say, a fixed element of the carrier. By construction $c_{n}^{\mathcal{M}} \neq c_{m}^{\mathcal{M}}$ for $n, m<k$ with $n \neq m$, and hence \mathcal{M} models each formula on the right-hand side in (??), and thus also each formula in Δ_{0}.
So we showed that any finite subset of Δ is satisfiable, and hence by the Compactness Theorem also Δ is satisfiable, say by a model \mathcal{N}. Since $\Gamma \subseteq \Delta, \mathcal{N}$ is also a model of Γ, and moreover $\left\{c_{n}^{\mathcal{N}} \mid n \in \mathbb{N}\right\}$ is an infinite subset of the carrier of \mathcal{N}, because for $n \neq m$ we have $\mathcal{N} \models c_{n} \neq c_{m}$, i.e., $c_{n}^{\mathcal{N}} \neq c_{m}^{\mathcal{N}}$.
10. We write $\varphi \leftrightarrow \psi$ to mean $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$. In a language with only one predicate symbol P explain why the following formula is valid in all models (5p)

$$
(\forall x \forall y(P(x) \leftrightarrow P(y))) \leftrightarrow((\forall x P(x)) \vee(\forall x \neg P(x)))
$$

Solution: For a model to satisfy $\varphi \leftrightarrow \psi$ it has to satisfy both φ and ψ or none of them.

If a model \mathcal{M} with carrier \mathcal{A} satisfies $((\forall x P(x)) \vee(\forall x \neg P(x)))$ then the interpretation of $P, P^{\mathcal{M}}$, is either \mathcal{A} itself or the empty set \emptyset. In both cases \mathcal{M} satisfies $(\forall x \forall y(P(x) \leftrightarrow P(y)))$: If $P^{\mathcal{M}}=A$ then the conclusion of the implication must hold, while if $P^{\mathcal{M}}=\emptyset$ then the antecedent of the implication cannot hold.
If the model \mathcal{M} does not satisfy $((\forall x P(x)) \vee(\forall x \neg P(x)))$ then $\mathcal{A}=P^{\mathcal{M}} \cup Q$ where both $P^{\mathcal{M}}$ and Q are non-empty and disjoint. And then \mathcal{M} will not satisfy $(\forall x \forall y(P(x) \leftrightarrow P(y)))$ either: because otherwise it would follow that if $a \in P^{\mathcal{M}}$ then $b \in P^{\mathcal{M}}$ for any $a, b \in A$, but then we can pick them such that $a \in P^{\mathcal{M}}$ and $b \in Q$ and reach a contradiction.

Good Luck!

Jan and Thierry

