Inst.: Data- och informationsteknik Kursnamn: Logic in Computer Science Examinator: Thierry Coquand Kurs: DIT201/DAT060 Datum: 2016-10-25 No help documents Telefonvakt: akn. 1030 All answers and solutions must be carefully motivated! total 60; ≥ 28 : 3, ≥ 38 : 4, ≥ 50 : 5 total 60; ≥ 28 : G, ≥ 42 : VG All answers **must** be carefully motivated.

- 1. Give proofs in natural deduction of the following sequents:
 - (a) $p \to q, q \to r, p \to s \vdash p \to (r \land s)$ (3p) Solution:

1.	$p \to q$	premise
2.	$q \rightarrow r$	premise
3.	$p \rightarrow s$	premise
4.	p	assumption
5.	q	$\rightarrow e(1,4)$
6.	r	$\rightarrow e(2,5)$
7.	s	$\rightarrow e(3,4)$
8.	$r \wedge s$	$\wedge i(6,7)$
9.	$p \to r \wedge s$	$\rightarrow i(4-8)$

(b)
$$\neg (p \lor q) \vdash \neg p \land \neg q$$
 (3p)
Solution:

1.
$$\neg(p \lor q)$$
premise2. p assumption3. $p \lor q$ $\lor i_1(2)$ 4. \bot $\rightarrow e(1,3)$ 5. $\neg p$ $\rightarrow i(2-4)$ 6. q assumption7. $p \lor q$ $\lor i_2(6)$ 8. \bot $\rightarrow e(1,7)$ 9. $\neg q$ $\rightarrow i(6-8)$ 10. $\neg p \land \neg q$ $\land i(5,9)$

(c) $p \lor q \vdash \neg q \to p$ (3p) Solution:

1.	$p \lor q$	premise
2.	$\neg q$	assumption
3.	p	assumption
4.	q	assumption
5.		$\rightarrow e(2,4)$
6.	p	$\perp e(5)$
7.	p	$\vee e(1, 3 - 3, 4 - 6)$
8.	$\neg q \rightarrow p$	$\rightarrow i(2-7)$

2. Explain why the following LTL formula

$$((F p) \land F q) \to F(p \land q)$$

is *not* valid (2p) and why the following formula is valid (3p)

$$((F p) \land F q) \rightarrow (F(p \land F q)) \lor F(q \land F p)$$

Solution:

(a) Consider the following transition system \mathcal{M} :

The path $\pi = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ alternating between s_0 and s_1 satisfies $\mathcal{M}, \pi \models Fp$ (since $\mathcal{M}, \pi^0 \models p$) and $\mathcal{M}, \pi \models Fq$ (since $\mathcal{M}, \pi^1 \models q$) but no state contains both p and q, hence $\mathcal{M}, \pi \not\models F(p \land q)$.

(b) Let \mathcal{M} be a transition system and π a path in \mathcal{M} such that $\mathcal{M}, \pi \models F p \wedge F q$. So there are $i \geq 0$ and $j \geq 0$ with

$$\mathcal{M}, \pi^i \models p \text{ and } \mathcal{M}, \pi^j \models q.$$

In case $i \leq j$, we have $\mathcal{M}, \pi^i \models \mathrm{F} q$ and hence $\mathcal{M}, \pi \models \mathrm{F}(p \wedge \mathrm{F} q)$. Similarly we get $\mathcal{M}, \pi \models \mathrm{F}(q \wedge \mathrm{F} p)$ in case $j \leq i$. In either case we obtain

$$\mathcal{M}, \pi \models \mathcal{F}(p \land \mathcal{F} q) \lor \mathcal{F}(q \land \mathcal{F} p)$$

what we had to show.

3. We consider the following language: we have one binary predicate symbol R, a unary function symbol f, and a constant c.

- (a) Define what a model of this language is. (3p)
- (b) Explain why the formula $R(c,c) \rightarrow \forall x R(x, f(x)))$ is not derivable. (2p)

Solution:

A model M of this language consists in a set A, an interpretation \mathbb{R}^M which is a subset of $A \times A$, an interpretation f^M which is a function $A \to A$ and an interpretation c^M which is an element of A

For showing that the formula $R(c,c) \to \forall x R(x, f(x)))$, it is enough, by *soundness*, to give a model for which this formula is not valid. We can for instance take $A = \{0,1\}$ and $c^M = 0$ and $R^M = \{(0,0)\}$ and $f^M(0) = f^M(1) = 1$. We then have $M \models R(c,c)$ but $M \models \neg \forall x R(x, f(x))$.

- 4. Let P, S and M be unary predicates and R a binary predicate. Decide for each of the sequents below whether they are valid or not, i.e., give a proof in natural deduction or a counter-model. (12p)
 - (a) $\exists x (P(x) \land \neg M(x)), \exists y (M(y) \land \neg S(y)) \vdash \exists z (P(z) \land \neg S(z))$ **Solution:** Not valid. Take the model \mathcal{M} with domain $D = \{0, 1\}$ and $P^{\mathcal{M}} = \{0\}, M^{\mathcal{M}} = \{1\}, S^{\mathcal{M}} = \{0\}.$
 - (b) $\forall x \neg R(x, x) \vdash \forall x \; \forall y \, (R(x, y) \rightarrow \neg R(y, x))$ **Solution:** Not valid. Take the model \mathcal{M} with domain $D = \{0, 1\}$ and $R^{\mathcal{M}} = \{(0, 1), (1, 0)\}.$
 - (c) $\forall x \ \forall y \ (R(x, y) \to \neg R(y, x)) \vdash \forall z \ \neg R(z, z)$ Solution: Valid.

1.	$\forall x \; \forall y \left(R(x, y) \to \neg R(y, x) \right)$	premise
2.	z_0	assumption
3.	$R(z_0, z_0)$	assumption
4.	$\forall y \left(R(z_0, y) \to \neg R(y, z_0) \right)$	$\forall \mathbf{e}(1, z_0)$
5.	$R(z_0, z_0) \to \neg R(z_0, z_0)$	$\forall \mathbf{e}(4, z_0)$
6.	$\neg R(z_0, z_0)$	$\rightarrow e(5,3)$
7.		$\rightarrow e(6,3)$
8.	$\neg R(z_0, z_0)$	$\rightarrow i(3-7)$
9.	$\forall z \neg R(z, z)$	$\forall i(2-8)$

(d) $\vdash \forall x \exists y R(x, y) \lor \forall x \exists y \neg R(x, y)$

Solution: Not valid. Take the model \mathcal{M} with domain $D = \{0, 1\}$ and $R^{\mathcal{M}} = \{(1, 1), (1, 0)\}.$

- 5. Let P, Q, and R be unary predicate symbols, and f a unary function symbol. Give proofs in natural deduction of the following sequents:
 - (a) $\forall x (P(x) \to (Q(x) \lor R(x))), \neg \exists x (P(x) \land R(x)) \vdash \forall x (P(x) \to Q(x))$ (4p)

Solution:

1.	$\forall x \left(P(x) \to \left(Q(x) \lor R(x) \right) \right)$	premise
2.	$\neg \exists x \left(P(x) \land R(x) \right)$	premise
3.	x_0	assumption
4.	$P(x_0)$	assumption
5.	$P(x_0) \to (Q(x_0) \lor R(x_o))$	$\forall \mathbf{e}(1, x_0)$
6.	$Q(x_0) \vee R(x_o)$	$\rightarrow e(5,4)$
7.	$Q(x_0)$	assumption
8.	$R(x_0)$	assumption
9.	$P(x_0) \wedge R(x_0)$	$\wedge i(4,8)$
10.	$\exists x \left(P(x) \land R(x) \right)$	$\exists i(9, x_0)$
11.		$\rightarrow e(2, 10)$
12.	$Q(x_0)$	$\perp e(11)$
13.	$Q(x_0)$	$\vee e(6, 7, 8 - 12)$
14.	$P(x_0) \to Q(x_0)$	$\rightarrow i(4-13)$
15.	$\forall x \left(P(x) \to Q(x) \right)$	$\forall i(3-14)$
(b) $\forall x (f(f(x)$	$(x) = x) \vdash \forall x \exists y (x = f(y))$ (4p)	

Solution:

1.	$\forall x \left(f(f(x)) = x \right)$	premise
2.		assumption
3.	$f(f(x_0)) = x_0$	$\forall \mathbf{e}(1, x_0)$
4.	$f(f(x_0)) = f(f(x_0))$	$=\mathbf{i}(f(f(x_0)))$
5.	$x_0 = f(f(x_0))$	$=e(3,4,x=f(f(x_0)))$
6.	$\exists y (x_0 = f(y))$	$\exists i(5, f(x_0))$
7.	$\forall x \exists y (x = f(y))$	$\forall i(2-6)$

6. Consider the transition system $\mathcal{M} = (S, \rightarrow, L)$ where the states are $S = \{s_0, s_1, s_2, s_3, s_4\}$, the transitions are $s_0 \rightarrow s_0, s_1 \rightarrow s_0, s_1 \rightarrow s_2, s_2 \rightarrow s_1, s_2 \rightarrow s_3, s_3 \rightarrow s_4, s_4 \rightarrow s_3, s_4 \rightarrow s_4$, and the labeling function is given by $L(s_0) = L(s_4) = \{p\}, L(s_2) = \{q\}$, and $L(s_1) = L(s_3) = \emptyset$.

- (a) Do we have $\mathcal{M} \models G(q \rightarrow F p)$? (3p) Solution: No. Take $\pi \coloneqq (s_2, s_1, s_2, s_1, \ldots)$ at 0.
- (b) Which are the states s that satisfy the CTL formula AG(EF p) (i.e., where $\mathcal{M}, s \models AG(EF p)$)? (3p) Solution: All states because all states satisfy EF p.
- A set of connectives is called *adequate* if for every formula of propositional logic there is an equivalent formula using only connectives from this set. Explain why {∧, ¬} is adequate. (3p)

Solution:

We can define $p \lor q$ as $\neg(\neg p \land \neg q)$ and $p \to q$ as $\neg(p \land \neg q)$.

8. We fix a language with a relation symbol R. Give a model which validates all the following formulae (4p)

 $\begin{aligned} \forall x \ \neg R(x,x) & \forall x \ \forall y \ \forall z \ ((R(x,y) \land R(y,z)) \to R(x,z)) \\ \forall x \ \exists y \ R(x,y) & \forall x \ \exists y \ R(y,x) & \forall x \ \forall y \ (R(x,y) \to \exists z \ (R(x,z) \land R(z,y))) \end{aligned}$

Solution:

A model M is given by taking the domain to be the set of rationals \mathbb{Q} , or the set of reals \mathbb{R} , and \mathbb{R}^M to be the set of (x, y) such that x < y

9. Suppose that Γ is a set of sentences (i.e., formulas without free variables) in a given language such that for any natural number $n \geq 0$, Γ has a model whose domain (carrier set) has at least *n* elements. Show that Γ has a model whose domain is infinite. (*Hint:* Use the Compactness Theorem.) (3p)

Solution: We extend the language by adding constants c_n for each $n \in \mathbb{N}$, and let

$$\Delta := \Gamma \cup \{ c_n \neq c_m \mid n, m \in \mathbb{N} \text{ and } n \neq m \}.$$

We now show that any finite subset $\Delta_0 \subseteq \Delta$ has a model. Since Δ_0 is finite we can find an $k \in \mathbb{N}$ such that

 $\Delta_0 \subseteq \Gamma \cup \{ c_n \neq c_m \mid n, m \in \mathbb{N} \text{ such that } n < k, m < k, \text{ and } n \neq m \}.$ (1)

By assumption Γ has a model \mathcal{M} with at least k elements; we can make this a model of the extended language by interpreting $c_0, c_1, \ldots, c_{k-1}$ by the k different elements in the carrier of \mathcal{M} ; all the other constants $c_n, n \geq k$, are interpreted by, say, a fixed element of the carrier. By construction $c_n^{\mathcal{M}} \neq c_m^{\mathcal{M}}$ for n, m < k with $n \neq m$, and hence \mathcal{M} models each formula on the right-hand side in (??), and thus also each formula in Δ_0 .

So we showed that any finite subset of Δ is satisfiable, and hence by the Compactness Theorem also Δ is satisfiable, say by a model \mathcal{N} . Since $\Gamma \subseteq \Delta$, \mathcal{N} is also a model of Γ , and moreover $\{c_n^{\mathcal{N}} \mid n \in \mathbb{N}\}$ is an infinite subset of the carrier of \mathcal{N} , because for $n \neq m$ we have $\mathcal{N} \models c_n \neq c_m$, i.e., $c_n^{\mathcal{N}} \neq c_m^{\mathcal{N}}$.

10. We write $\varphi \leftrightarrow \psi$ to mean $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. In a language with only one predicate symbol P explain why the following formula is valid in all models (5p)

$$(\forall x \forall y (P(x) \leftrightarrow P(y))) \leftrightarrow ((\forall x P(x)) \lor (\forall x \neg P(x)))$$

Solution: For a model to satisfy $\varphi \leftrightarrow \psi$ it has to satisfy both φ and ψ or none of them.

If a model \mathcal{M} with carrier \mathcal{A} satisfies $((\forall x P(x)) \lor (\forall x \neg P(x)))$ then the interpretation of P, $P^{\mathcal{M}}$, is either \mathcal{A} itself or the empty set \emptyset . In both cases \mathcal{M} satisfies $(\forall x \forall y (P(x) \leftrightarrow P(y)))$: If $P^{\mathcal{M}} = A$ then the conclusion of the implication must hold, while if $P^{\mathcal{M}} = \emptyset$ then the antecedent of the implication cannot hold.

If the model \mathcal{M} does not satisfy $((\forall x P(x)) \lor (\forall x \neg P(x)))$ then $\mathcal{A} = P^{\mathcal{M}} \cup Q$ where both $P^{\mathcal{M}}$ and Q are non-empty and disjoint. And then \mathcal{M} will not satisfy $(\forall x \forall y (P(x) \leftrightarrow P(y)))$ either: because otherwise it would follow that if $a \in P^{\mathcal{M}}$ then $b \in P^{\mathcal{M}}$ for any $a, b \in A$, but then we can pick them such that $a \in P^{\mathcal{M}}$ and $b \in Q$ and reach a contradiction.

Good Luck!

Jan and Thierry