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All answers must be carefully motivated.

1. We consider the following language: we have one binary predicate symbol
P , a binary function symbol g, and a constant c.

(a) Define what a model of this language is. (3p)

Solution: A model M for this language is:

i. A nonempty set A,

ii. a set PM ⊆ A2,

iii. a function gM : A2 → A,

iv. and a constant element cM ∈ A.

(b) Give an example of a formula using P , g, and c which does not hold
in all models. (2p)

Solution: The formula ϕ = P (g(c, c), c) does not hold in the model
M given by:

i. A = {0, 1},
ii. PM = {(0, 0)},

iii. gM(x, y) = x,

iv. cM = 1.

With this model and an arbitrary look-up table l we get M 6|=l ϕ as
(1, 1) /∈ PM.
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2. Give proofs in natural deduction of the following sequents:

(a) (p→ s) ∨ (q → t) ` (p ∧ q)→ (t ∨ s) (3p)

Solution:

 (p→ s) ∨ (q → t) Premise

 p ∧ q Assumption

 p ∧e1 2

 q ∧e2 2

 p→ s Assumption

 s →e 3, 5

 t ∨ s ∨i2 6

 q → t Assumption

 t →e 4, 8

 t ∨ s ∨i1 9

 t ∨ s ∨e 1, 5− 7, 8− 10

 (p ∧ q)→ (t ∨ s) →i 1− 11

(b) p→ ¬q, q ` p→ r (3p)

Solution:

 p→ ¬q Premise

 q Premise

 p Assumption

 ¬q →e 1, 3

 ⊥ ¬e 2, 4

 r ⊥e 5

 p→ r →i 3− 6
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(c) ` (p ∨ ¬q)→ (q → p) (3p)

Solution:

 p ∨ ¬q Assumption

 q Assumption

 p Assumption

 ¬q Assumption

 ⊥ ¬e 2, 4

 p ⊥e 5

 p ∨e 1, 3− 3, 4− 6

 q → p →i 2− 7

 (p ∨ ¬q)→ (q → p) →i 1− 8

3. Consider the transition system M = (S,→, L) where the states are S =
{s0, s1, s2, s3}, the transitions are s0 → s1, s0 → s3, s1 → s2, s2 → s1, s2 →
s3, s3 → s3, s3 → s0, and s3 → s1, and the labeling function is given by
L(s0) = {c}, L(s1) = {b}, L(s2) = {t, b}, and L(s3) = ∅.

(a) Is the LTL-formula G(b→ F t) satisfied on all paths of the transition
system? (2p)

Solution: Yes! Let π be a path and i ≥ 1 with πi |= b. We show
πi |= F t. Since πi |= b we get π(i) = s1 or π(i) = s2. In the first case
we must have π(i + 1) = s2 as s2 is the only successor of s1; hence
πi+1 |= t and thus πi |= F t. In the second case, we already have
πi |= t and hence πi |= F t.

(b) Is the LTL-formula G F(¬b) satisfied on all paths of the transition
system? (2p)

Solution: No! Consider the path alternating between s1 and s2,
π = s1 → s2 → s1 → s2 → . . . . Here, at any given stage i ≥ 1,
b ∈ L(π(i)).

(c) Which are the states s that satisfy the CTL-formula E[¬cU(b ∧ ¬t)]
(i.e., where M, s |= E[¬cU(b ∧ ¬t)])? (2p)

Solution: Let ϕ = E[¬cU(b ∧ ¬t)]. The state s0 doesn’t satisfy ϕ
since it does neither satisfy ¬c nor b ∧ ¬t. Considering s1, we know
s1 |= b ∧ ¬t and thus we have s1 |= ϕ. For the state s2 there is the
path π = s2 → s1 → s2 → s1 → . . . which has π(1) |= ¬c and
π(2) |= b ∧ ¬t; hence s2 |= ϕ. Likewise, for the state s3 there is the
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path π′ = s3 → s1 → s2 → s1 → . . . which has π′(1) |= ¬c and
π′(2) |= b ∧ ¬t; hence s3 |= ϕ.

Hence the states s1, s2, and s3 satisfy ϕ.

(d) Do we have M, s0 |= AG(¬c→ AX b)? (2p)

Solution: No! Consider the path π = s0 → s3 → s3 → . . . . We have
that π(2) = s3 |= ¬c but s3 has successors not labeled with b, e.g., s3
itself.

4. Compute a conjunctive normal form (CNF) of the formula: (3p)

¬r → (¬p ∧ (p→ q))

Solution: A CNF of the formula is:

(¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ r)

5. Let P and Q be unary, R a binary, and S a nullary predicate symbols;
f is a unary function symbol. Give proofs in natural deduction of the
following sequents:

(a) ` ∀x ((P (x) ∧ ¬P (f(x)))→ x 6= f(x)) (3p)

Solution:

 x0

 P (x0) ∧ ¬P (f(x0)) Assumption

 x0 = f(x0) Assumption

 P (x0) ∧e1 2

 ¬P (f(x0)) ∧e2 2

 P (f(x0)) =e 3, 4

 ⊥ ¬e 5, 6

 x0 6= f(x0) ¬i 3− 7

 (P (x0) ∧ ¬P (f(x0)))→ x0 6= f(x0) →i 2− 8

 ∀x ((P (x) ∧ ¬P (f(x)))→ x 6= f(x)) ∀i 1− 9
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(b) ∀x∀y (R(x, y)→ P (x) ∨Q(y)),∃z ¬Q(z) ` ∃x (R(x, x)→ P (x)) (3p)

Solution:

 ∀x∀y (R(x, y)→ P (x) ∨Q(y)) Premise

 ∃z ¬Q(z) Premise

 z0 ¬Q(z0) Assumption

 ∀y (R(z0, y)→ P (z0) ∨Q(y)) ∀e 1

 R(z0, z0)→ P (z0) ∨Q(z0) ∀e 4

 R(z0, z0) Assumption

 P (z0) ∨Q(z0) →e 5, 6

 P (z0) Assumption

 Q(z0) Assumption

 ⊥ ¬e 3, 9

 P (z0) ⊥e 10

 P (z0) ∨e 7, 8− 8, 9− 11

 R(z0, z0)→ P (z0) →i 5− 12

 ∃x (R(x, x)→ P (x)) ∃i 13

 ∃x (R(x, x)→ P (x)) ∃e 2, 3− 14
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(c) S → ∃xP (x) ` ∃x (S → P (x)) (4p)

Solution:

 S → ∃xP (x) Premise

 S ∨ ¬S LEM

 S Assumption

 ∃xP (x) →e 1, 3

 x0 P (x0) Assumption

 S Assumption

 P (x0) copy 5

 S → P (x0) →i 6− 7

 ∃x (S → P (x)) ∃i 8

 ∃x (S → P (x)) ∃e 4, 5− 9

 ¬S Assumption

 S Assumption

 ⊥ ¬e 11, 12

 P (x0) ⊥e 13

 S → P (x0) →i 12− 14

 ∃x (S → P (x)) ∃i 15

 ∃x (S → P (x)) ∨e 2, 3− 10, 11− 16

where x 6= y is ¬(x = y).

6. Let P and Q be unary predicates and R a binary predicate. Decide for
each of the sequents below whether they are valid or not, i.e., give a proof
in natural deduction or a counter-model.

(a) (∃xQ(x))→ (∃y P (y)) ` ∀z (Q(z)→ P (z)) (3p)

Solution: This is not valid, a counter-model M is given by:

• A = N,

• PM = {x | x is even},
• QM = {x | x is odd}.
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With an arbitrary look-up table l we haveM |=l (∃xQ(x))→ (∃y P (y))
as there are even and odd numbers, but M 6|=l ∀z (Q(z) → P (z))
as 1 ∈ QM but 1 /∈ PM. So by soundness we get (∃xQ(x)) →
(∃y P (y)) 6` ∀z (Q(z)→ P (z)).

(b) ∀x (f(f(x)) = x) ` ∀x (f(x) = f(f(x))) (3p)

Solution: This is not valid, a counter-model M is given by:

• A = Z,

• fM(x) = −x.

With an arbitrary look-up table l we have M |=l ∀x (f(f(x)) = x)
as −(−x) = x for all elements in Z. But M 6|=l ∀x (f(x) = f(f(x)))
as for example −1 6= 1. So by soundness we get ∀x (f(f(x)) = x) 6`
∀x (f(x) = f(f(x))).

(c) ∀x∀y(R(x, y)→ ¬R(y, x)) ` ∀x¬R(x, x) (3p)

Solution: This is valid, proof:

 ∀x∀y(R(x, y)→ ¬R(y, x)) Premise

 x0

 ∀y(R(x0, y)→ ¬R(y, x0)) ∀e 1

 R(x0, x0)→ ¬R(x0, x0) ∀e 1

 R(x0, x0) Assumption

 ¬R(x0, x0) →e 4

 ⊥ ¬e 5, 6

 ¬R(x0, x0) ¬i 5− 7

 ∀x¬R(x, x) ∀i 2− 8

(d) ∀x∀y∀z (R(x, y) ∧R(y, z)→ R(x, z)),∀x ∃y R(x, y) ` ∀xR(x, x) (3p)

Solution: This is not valid, a counter-model M is given by:

• A = N,

• RM = {(x, y) | x < y}.
With an arbitrary look-up table l we have M |=l ∀x∀y∀z (R(x, y) ∧
R(y, z) → R(x, z)) as < is transitive and M |=l ∀x ∃y R(x, y) as
we can always take y = x + 1. But M 6|=l ∀xR(x, x) as < is
not reflexive. So by soundness we get ∀x∀y∀z (R(x, y) ∧ R(y, z) →
R(x, z)),∀x∃y R(x, y) 6` ∀xR(x, x).
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7. A set of connectives is called adequate if for every formula of propositional
logic there is an equivalent formula using only connectives from this set.
Show that, if C ⊆ {¬,∧,∨,→,⊥} is adequate, then ¬ ∈ C or ⊥ ∈ C.

(4p)

Solution: Let C be a subset not containing ¬ and ⊥, and ϕ a formula
constructed using the connectives in C. Consider a valuation v assigning
the value T to all propositional variables in ϕ, then v(ϕ) = T as all con-
nectives in ϕ evaluates to T for input T. Hence can neither ¬ nor ⊥ be
expressed using C, which means that C is not adequate.

8. Is the following LTL-formula valid, i.e., satisfied on all paths of all transi-
tion systems? (4p)

G(p→ F G q)→ (G¬p) ∨ (F G q)

Solution: Yes it is valid. Let π be a path in a model M such that
π |= G(p→ F G q) and π 6|= G¬p. We now have to show that π |= F G q.
The assumption π 6|= G¬p yields π |= F p, i.e., there is an i ≥ 1 with
πi |= p. By the other assumption we get from this πi |= F G q, i.e.,
πi+j |= G q for some j ≥ 0. Hence we have shown π |= F G q.

9. Consider propositional atoms p1, p2, . . . , pn for n ≥ 1. Define the formula
G = p1 ∧ p2 ∧ · · · ∧ pn. Prove that if n is odd, then

(p1 ↔ p2)→ G, (p2 ↔ p3)→ G, . . . , (pn−1 ↔ pn)→ G, (pn ↔ p1)→ G � G

where p1 ↔ p2 is (p1 → p2) ∧ (p2 → p1) etc. (5p)

Solution:

Consider a valuation v that makes all the premises

(p1 ↔ p2)→ G, (p2 ↔ p3)→ G, . . . , (pn−1 ↔ pn)→ G, (pn ↔ p1)→ G.

true. Assume v(G) = F. Then by assumption we obtain v(pi ↔ pi+1) = F,
i.e., v must assign different to values to each consecutive pair (pi, pi+1). Say
v assigns T to p1 (the other case is similar), we must then have v(p2) = F

which means that v(p3) = T, etc. But as n is odd we will have v(pn) = T

(as we have flipped the value n − 1 times), hence v(pn ↔ p1) = T which
implies v(G) = T, a contradiction. Hence v(G) = T.

Thus we have proved

(p1 ↔ p2)→ G, (p2 ↔ p3)→ G, . . . , (pn−1 ↔ pn)→ G, (pn ↔ p1)→ G � G
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