Inst.: Data- och informationsteknik Kursnamn: Logic in Computer Science Examinator: Thierry Coquand Kurs: DIT201/DAT060 Datum: 2013-10-22 No help documents Telefonvakt: akn. 5410 All answers and solutions must be carefully motivated! total 60; \geq 28: 3, \geq 38: 4, \geq 50: 5 total 60; \geq 28: G, \geq 42: VG All answers **must** be carefully motivated.

- 1. We consider the following language: we have one binary predicate symbol P, a binary function symbol g, and a constant c.
 - (a) Define what a model of this language is. (3p)
 Solution: A model *M* for this language is:
 - i. A nonempty set A,
 - ii. a set $P^{\mathcal{M}} \subseteq A^2$,
 - iii. a function $g^{\mathcal{M}}: A^2 \to A$,
 - iv. and a constant element $c^{\mathcal{M}} \in A$.
 - (b) Give an example of a formula using P, g, and c which does not hold in all models. (2p)

Solution: The formula $\varphi = P(g(c, c), c)$ does not hold in the model \mathcal{M} given by:

i.
$$A = \{0, 1\},$$

ii. $P^{\mathcal{M}} = \{(0, 0)\},$
iii. $g^{\mathcal{M}}(x, y) = x,$

iii. $g^{\mathcal{M}}(x,y) =$ iv. $c^{\mathcal{M}} = 1$.

With this model and an arbitrary look-up table l we get $\mathcal{M} \not\models_l \varphi$ as $(1,1) \notin P^{\mathcal{M}}$.

2.	Give proofs	in natural	deduction	of the	following	sequents:
----	-------------	------------	-----------	--------	-----------	-----------

(a) $(p \to s) \lor (q \to t) \vdash (p \land q) \to (t \lor s)$ (3p) Solution:

1	$(p \to s) \lor (q \to t)$	Premise
2	$p \wedge q$	Assumption
3	p	$\wedge_{e_1} 2$
4	q	$\wedge_{e_2} 2$
5	$p \rightarrow s$	Assumption
6	S	$\rightarrow_e 3,5$
7	$t \lor s$	$\vee_{i_2} 6$
8	$q \rightarrow t$	Assumption
9	t	$\rightarrow_e 4, 8$
10	$t \lor s$	$\vee_{i_1} 9$
11	$t \lor s$	$\vee_e 1, 5 - 7, 8 - 10$
12	$(p \land q) \to (t \lor s)$	$\rightarrow_i 1 - 11$

(b) $p \to \neg q, q \vdash p \to r$ Solution: (3p)

 $_{1} \quad p \rightarrow \neg q$ Premise Premise q $\mathbf{2}$ Assumption $_3 p$ $\rightarrow_e 1, 3$ $_4 \neg q$ $\neg_e 2, 4$ \bot 5 $\perp_e 5$ 6 r $\rightarrow_i 3-6$ $_7 \quad p \to r$

(c)
$$\vdash (p \lor \neg q) \to (q \to p)$$

Solution:

$ 1 p \lor \neg q $	Assumption
2 q	Assumption
<u>3</u> p	Assumption
$4 \neg q$	Assumption
5 1	$\neg_e 2, 4$
6 p	$\perp_e 5$
7 p	$\vee_e \ 1, 3 - 3, 4 - 6$
$ s q \to p $	$\rightarrow_i 2-7$
$_{9} (p \lor \neg q) \to (q \to p)$	$\rightarrow_i 1-8$

(3p)

- 3. Consider the transition system $\mathcal{M} = (S, \rightarrow, L)$ where the states are $S = \{s_0, s_1, s_2, s_3\}$, the transitions are $s_0 \rightarrow s_1, s_0 \rightarrow s_3, s_1 \rightarrow s_2, s_2 \rightarrow s_1, s_2 \rightarrow s_3, s_3 \rightarrow s_3, s_3 \rightarrow s_0$, and $s_3 \rightarrow s_1$, and the labeling function is given by $L(s_0) = \{c\}, L(s_1) = \{b\}, L(s_2) = \{t, b\}$, and $L(s_3) = \emptyset$.
 - (a) Is the LTL-formula $G(b \to Ft)$ satisfied on all paths of the transition system? (2p)

Solution: Yes! Let π be a path and $i \ge 1$ with $\pi^i \models b$. We show $\pi^i \models Ft$. Since $\pi^i \models b$ we get $\pi(i) = s_1$ or $\pi(i) = s_2$. In the first case we must have $\pi(i+1) = s_2$ as s_2 is the only successor of s_1 ; hence $\pi^{i+1} \models t$ and thus $\pi^i \models Ft$. In the second case, we already have $\pi^i \models t$ and hence $\pi^i \models Ft$.

- (b) Is the LTL-formula G F(¬b) satisfied on all paths of the transition system? (2p)
 Solution: No! Consider the path alternating between s₁ and s₂, π = s₁ → s₂ → s₁ → s₂ → Here, at any given stage i ≥ 1, b ∈ L(π(i)).
- (c) Which are the states s that satisfy the CTL-formula $E[\neg c U(b \land \neg t)]$ (i.e., where $\mathcal{M}, s \models E[\neg c U(b \land \neg t)]$)? (2p) **Solution**: Let $\varphi = E[\neg c U(b \land \neg t)]$. The state s_0 doesn't satisfy φ since it does neither satisfy $\neg c$ nor $b \land \neg t$. Considering s_1 , we know $s_1 \models b \land \neg t$ and thus we have $s_1 \models \varphi$. For the state s_2 there is the path $\pi = s_2 \rightarrow s_1 \rightarrow s_2 \rightarrow s_1 \rightarrow \ldots$ which has $\pi(1) \models \neg c$ and $\pi(2) \models b \land \neg t$; hence $s_2 \models \varphi$. Likewise, for the state s_3 there is the

4

path $\pi' = s_3 \to s_1 \to s_2 \to s_1 \to \dots$ which has $\pi'(1) \models \neg c$ and $\pi'(2) \models b \land \neg t$; hence $s_3 \models \varphi$.

Hence the states s_1, s_2 , and s_3 satisfy φ .

- (d) Do we have $\mathcal{M}, s_0 \models \operatorname{AG}(\neg c \to \operatorname{AX} b)$? (2p) **Solution**: No! Consider the path $\pi = s_0 \to s_3 \to s_3 \to \ldots$. We have that $\pi(2) = s_3 \models \neg c$ but s_3 has successors not labeled with b, e.g., s_3 itself.
- 4. Compute a conjunctive normal form (CNF) of the formula: (3p)

$$\neg r \to (\neg p \land (p \to q))$$

Solution: A CNF of the formula is:

$$(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor r)$$

5. Let P and Q be unary, R a binary, and S a nullary predicate symbols; f is a unary function symbol. Give proofs in natural deduction of the following sequents:

1	x_0	
2	$P(x_0) \land \neg P(f(x_0))$	Assumption
3	$x_0 = f(x_0)$	Assumption
4	$P(x_0)$	$\wedge_{e_1} 2$
5	$\neg P(f(x_0))$	$\wedge_{e_2} 2$
6	$P(f(x_0))$	$=_{e} 3,4$
7	\perp	\neg_e 5,6
8	$x_0 \neq f(x_0)$	$\neg_i 3-7$
9	$(P(x_0) \land \neg P(f(x_0))) \to x_0 \neq f(x_0)$	$\rightarrow_i 2-8$
10	$\forall x \left(\left(P(x) \land \neg P(f(x)) \right) \to x \neq f(x) \right)$	$\forall_i \ 1-9$

(a) $\vdash \forall x ((P(x) \land \neg P(f(x))) \to x \neq f(x))$ (3p) Solution:

	Solution:	
1	$\forall x \forall y \left(R(x,y) \to P(x) \lor Q(y) \right)$	Premise
2	$\exists z \neg Q(z)$	Premise
3	$z_0 \neg Q(z_0)$	Assumption
4	$\forall y \left(R(z_0, y) \to P(z_0) \lor Q(y) \right)$	$\forall_e 1$
5	$R(z_0, z_0) \to P(z_0) \lor Q(z_0)$	$\forall_e 4$
6	$R(z_0, z_0)$	Assumption
7	$P(z_0) \lor Q(z_0)$	$\rightarrow_e 5, 6$
8	$P(z_0)$	Assumption
9	$Q(z_0)$	Assumption
10	\perp	\neg_e 3,9
11	$P(z_0)$	$\perp_e 10$
12	$P(z_0)$	$\vee_e 7, 8 - 8, 9 - 11$
13	$R(z_0, z_0) \to P(z_0)$	$\rightarrow_i 5-12$
14	$\exists x \left(R(x, x) \to P(x) \right)$	$\exists_i 13$
15	$\exists x \left(R(x, x) \to P(x) \right)$	$\exists_e 2, 3-14$

(b) $\forall x \forall y (R(x, y) \to P(x) \lor Q(y)), \exists z \neg Q(z) \vdash \exists x (R(x, x) \to P(x))$ (3p) Solution:

(c)	$S \to \exists x P(x) \vdash \exists x (S \to P(x))$ Solution:	(4p)
1	$S \to \exists x P(x)$	Premise
2	$S \vee \neg S$	LEM
3	S	Assumption
4	$\exists x P(x)$	$\rightarrow_e 1,3$
5	$x_0 P(x_0)$	Assumption
6	S	Assumption
7	$P(x_0)$	copy 5
8	$S \to P(x_0)$	$\rightarrow_i 6-7$
9	$\exists x \left(S \to P(x) \right)$	$\exists_i 8$
10	$\exists x \left(S \to P(x) \right)$	$\exists_e 4, 5-9$
11	$\neg S$	Assumption
12	S	Assumption
13	\perp	$\neg_e 11, 12$
14	$P(x_0)$	$\perp_e 13$
15	$S \to P(x_0)$	$\rightarrow_i 12 - 14$
16	$\exists x \left(S \to P(x) \right)$	$\exists_i 15$
17	$\exists x \left(S \to P(x) \right)$	$\lor_e 2, 3 - 10, 11 - 16$

where $x \neq y$ is $\neg(x = y)$.

- 6. Let P and Q be unary predicates and R a binary predicate. Decide for each of the sequents below whether they are valid or not, i.e., give a proof in natural deduction or a counter-model.
 - (a) $(\exists x Q(x)) \to (\exists y P(y)) \vdash \forall z (Q(z) \to P(z))$ (3p) Solution: This is not valid, a counter-model \mathcal{M} is given by:
 - $A = \mathbb{N},$
 - $P^{\mathcal{M}} = \{x \mid x \text{ is even}\},\$
 - $Q^{\mathcal{M}} = \{x \mid x \text{ is odd}\}.$

With an arbitrary look-up table l we have $\mathcal{M} \models_l (\exists x Q(x)) \to (\exists y P(y))$ as there are even and odd numbers, but $\mathcal{M} \not\models_l \forall z (Q(z) \to P(z))$ as $1 \in Q^{\mathcal{M}}$ but $1 \notin P^{\mathcal{M}}$. So by *soundness* we get $(\exists x Q(x)) \to (\exists y P(y)) \not\vdash \forall z (Q(z) \to P(z)).$

- (b) $\forall x (f(f(x)) = x) \vdash \forall x (f(x) = f(f(x)))$ (3p) Solution: This is not valid, a counter-model \mathcal{M} is given by:
 - $A = \mathbb{Z}$,
 - $f^{\mathcal{M}}(x) = -x.$

With an arbitrary look-up table l we have $\mathcal{M} \models_l \forall x (f(f(x)) = x)$ as -(-x) = x for all elements in \mathbb{Z} . But $\mathcal{M} \not\models_l \forall x (f(x) = f(f(x)))$ as for example $-1 \neq 1$. So by *soundness* we get $\forall x (f(f(x)) = x) \not\vdash \forall x (f(x) = f(f(x)))$.

(c) $\forall x \forall y (R(x, y) \to \neg R(y, x)) \vdash \forall x \neg R(x, x)$ (3p) Solution: This is valid, proof:

$$\forall x \forall y (R(x, y) \to \neg R(y, x))$$

Premise

2	x_0	
3	$\forall y (R(x_0, y) \to \neg R(y, x_0))$	$\forall_e 1$
4	$R(x_0, x_0) \to \neg R(x_0, x_0)$	$\forall_e 1$
5	$R(x_0, x_0)$	Assumption
6	$\neg R(x_0, x_0)$	$\rightarrow_e 4$
7	\perp	$\neg_e 5, 6$
8	$\neg R(x_0, x_0)$	$\neg_i 5 - 7$
9	$\forall x \neg R(x, x)$	$\forall_i \ 2-8$

- (d) $\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z)), \forall x \exists y R(x, y) \vdash \forall x R(x, x)$ (3p) Solution: This is not valid, a counter-model \mathcal{M} is given by:
 - $A = \mathbb{N},$
 - $R^{\mathcal{M}} = \{(x, y) \mid x < y\}.$

With an arbitrary look-up table l we have $\mathcal{M} \models_l \forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z))$ as < is transitive and $\mathcal{M} \models_l \forall x \exists y R(x, y)$ as we can always take y = x + 1. But $\mathcal{M} \not\models_l \forall x R(x, x)$ as < is not reflexive. So by *soundness* we get $\forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z)), \forall x \exists y R(x, y) \nvDash \forall x R(x, x).$

7. A set of connectives is called *adequate* if for every formula of propositional logic there is an equivalent formula using only connectives from this set. Show that, if $C \subseteq \{\neg, \land, \lor, \rightarrow, \bot\}$ is adequate, then $\neg \in C$ or $\bot \in C$. (4p)

Solution: Let C be a subset not containing \neg and \bot , and φ a formula constructed using the connectives in C. Consider a valuation v assigning the value T to all propositional variables in φ , then $v(\varphi) = T$ as all connectives in φ evaluates to T for input T. Hence can neither \neg nor \bot be expressed using C, which means that C is not adequate.

8. Is the following LTL-formula valid, i.e., satisfied on all paths of all transition systems? (4p)

$$\mathbf{G}(p \to \mathbf{F} \mathbf{G} q) \to (\mathbf{G} \neg p) \lor (\mathbf{F} \mathbf{G} q)$$

Solution: Yes it is valid. Let π be a path in a model \mathcal{M} such that $\pi \models \mathrm{G}(p \to \mathrm{F} \mathrm{G} q)$ and $\pi \not\models \mathrm{G} \neg p$. We now have to show that $\pi \models \mathrm{F} \mathrm{G} q$. The assumption $\pi \not\models \mathrm{G} \neg p$ yields $\pi \models \mathrm{F} p$, i.e., there is an $i \ge 1$ with $\pi^i \models p$. By the other assumption we get from this $\pi^i \models \mathrm{F} \mathrm{G} q$, i.e., $\pi^{i+j} \models \mathrm{G} q$ for some $j \ge 0$. Hence we have shown $\pi \models \mathrm{F} \mathrm{G} q$.

9. Consider propositional atoms p_1, p_2, \ldots, p_n for $n \ge 1$. Define the formula $G = p_1 \land p_2 \land \cdots \land p_n$. Prove that if n is odd, then

$$(p_1 \leftrightarrow p_2) \to G, (p_2 \leftrightarrow p_3) \to G, \dots, (p_{n-1} \leftrightarrow p_n) \to G, (p_n \leftrightarrow p_1) \to G \vDash G$$

where $p_1 \leftrightarrow p_2$ is $(p_1 \to p_2) \land (p_2 \to p_1)$ etc. (5p)

Solution:

Consider a valuation v that makes all the premises

$$(p_1 \leftrightarrow p_2) \rightarrow G, (p_2 \leftrightarrow p_3) \rightarrow G, \dots, (p_{n-1} \leftrightarrow p_n) \rightarrow G, (p_n \leftrightarrow p_1) \rightarrow G.$$

true. Assume v(G) = F. Then by assumption we obtain $v(p_i \leftrightarrow p_{i+1}) = F$, i.e., v must assign different to values to each consecutive pair (p_i, p_{i+1}) . Say v assigns T to p_1 (the other case is similar), we must then have $v(p_2) = F$ which means that $v(p_3) = T$, etc. But as n is odd we will have $v(p_n) = T$ (as we have flipped the value n - 1 times), hence $v(p_n \leftrightarrow p_1) = T$ which implies v(G) = T, a contradiction. Hence v(G) = T.

Thus we have proved

$$(p_1 \leftrightarrow p_2) \to G, (p_2 \leftrightarrow p_3) \to G, \dots, (p_{n-1} \leftrightarrow p_n) \to G, (p_n \leftrightarrow p_1) \to G \vDash G$$