Inst.: Data- och informationsteknik Kursnamn: Logic in Computer Science Examinator: Jan Smith Kurs: DIT201/DAT060 Datum: 2012-10-25 No help documents Telefonvakt: akn. 1034, 5410 All answers and solutions must be carefully motivated! total 60; \geq 28: 3, \geq 38: 4, \geq 50: 5 total 60; \geq 28: G, \geq 42: VG All answers **must** be carefully motivated.

- 1. We consider the following language: we have one binary predicate symbol R and one constant c.
 - (a) Define what a model of this language is. (3p)
 Solution: A model *M* for this language is:
 - i. A nonempty set A,
 - ii. a set $R^{\mathcal{M}} \subseteq A^2$,
 - iii. and a constant element $c^{\mathcal{M}} \in A$.
 - (b) Give an example of a formula in this language which does not hold in all models. (2p) **Solution**: The formula $\varphi = R(c, c)$ does not hold in the model \mathcal{M} given by:

i.
$$A = \{0, 1\},$$

ii. $R^{\mathcal{M}} = \{(0, 0)\},$

iii. $c^{\mathcal{M}} = 1$.

With this model and an arbitrary look-up table l we get $\mathcal{M} \not\models_l \varphi$ as $(1,1) \notin R^{\mathcal{M}}$.

- 2. Give proofs in natural deduction of the following sequents:
 - (a) $\vdash (\neg p \rightarrow p) \rightarrow \neg \neg p$ (3p) Solution:

$ 1 \neg p \to p $	Assumption
$2 \neg p$	Assumption
3 p	$\rightarrow_e 1, 2$
4 ⊥	\neg_e 3,2
$5 \neg \neg p$	$\neg_i 2-4$
$6 (\neg p \to p) \to \neg \neg p$	$\rightarrow_i 1-5$

(0)	$\vdash (p \to q) \lor (q \to r) (\text{sp})$ Solution:	
1	$q \vee \neg q$	LEM
2	q	Assumption
3	<i>p</i>	Assumption
4	q	copy 2
5	$p \rightarrow q$	$\rightarrow_i 3-4$
6	$(p \to q) \lor (q \to r)$	$\vee_{i_1} 5$
7	$\neg q$	Assumption
8	q	Assumption
9	\perp	$\neg_e 8,7$
10	r	$\perp_e 9$
11	$q \rightarrow r$	$\rightarrow_i 8 - 10$
12	$(p \to q) \lor (q \to r)$	\vee_{i_2} 11
13	$(p \to q) \lor (q \to r)$	$\vee_e 1, 2 - 6, 7 - 12$
(c)	$ eg p \to q, \ r \to p \vdash \neg q \lor r \to p$ (3p) Solution:	
1	$\neg p \rightarrow q$	Premise
2	$r \rightarrow p$	Premise
3	$\neg q \lor r$	Assumption
4	$\neg q$	Assumption
5	$\neg \neg p$	MT 1,4
6	<i>p</i>	$\neg \neg_e 5$
7	r	Assumption
8	p	$\rightarrow_e 2,7$
9	p	$\lor_e 3, 4-6, 7-8$
	$\neg q \lor r \rightarrow p$	$\rightarrow_i 3-9$

(b)
$$\vdash (p \to q) \lor (q \to r)$$
 (3p)
Solution:

3. Compute a conjunctive normal form (CNF) of the formula:

 $\neg (r \to p \lor q) \lor (\neg p \to q \land \neg r) \quad (3p)$

Solution: A CNF of the formula is:

 $(p \vee \neg q \vee \neg r) \land (p \vee q \vee r)$

- 4. Give proofs in natural deduction of the following sequents:
 - (a) $\forall x \forall y (P(y) \to Q(x)) \vdash \exists y P(y) \to \forall x Q(x)$ (3p) **Solution**: $\forall x \forall y (P(y) \to Q(x))$

1	$\forall x \forall y (P(y) \to Q(x))$	Premise
2	$\exists y P(y)$	Assumption
3	x_0	
4	$\forall y \left(P(y) \to Q(x_0) \right)$	$\forall x_e \ 1$
5	$y_0 P(y_0)$	Assumption
6	$P(y_0) \to Q(x_0)$	$\forall_e 4$
7	$Q(x_0)$	$\rightarrow_e 6, 5$
8	$Q(x_0)$	$\exists y_e \ 2, 5-7$
9	$\forall x Q(x)$	$\forall x_i \ 3-8$
10	$\exists y P(y) \to \forall x Q(x)$	$\rightarrow_i 2-9$
(b)	$c_1 = c_2 \lor d_1 = d_2 \vdash f(c_1) = f(c_2) \lor f(d_1) = f(d_2)$	(3p)
	Solution:	
1	Solution: $c_1 = c_2 \lor d_1 = d_2$	Premise
		Premise Assumption
2	$c_1 = c_2 \lor d_1 = d_2$	
2	$c_1 = c_2 \lor d_1 = d_2$ $c_1 = c_2$	Assumption
2 3 4	$c_1 = c_2 \lor d_1 = d_2$ $c_1 = c_2$ $f(c_1) = f(c_1)$	Assumption $=_i$
2 3 4 5	$c_1 = c_2 \lor d_1 = d_2$ $c_1 = c_2$ $f(c_1) = f(c_1)$ $f(c_1) = f(c_2)$	Assumption $=_{i}$ $=_{e} 2, 3$
2 3 4 5 6	$c_{1} = c_{2} \lor d_{1} = d_{2}$ $c_{1} = c_{2}$ $f(c_{1}) = f(c_{1})$ $f(c_{1}) = f(c_{2})$ $f(c_{1}) = f(c_{2}) \lor f(d_{1}) = f(d_{2})$	Assumption = $_i$ = $_e$ 2, 3 \lor_{i_1} 4
2 3 4 5 6 7	$c_{1} = c_{2} \lor d_{1} = d_{2}$ $c_{1} = c_{2}$ $f(c_{1}) = f(c_{1})$ $f(c_{1}) = f(c_{2})$ $f(c_{1}) = f(c_{2}) \lor f(d_{1}) = f(d_{2})$ $d_{1} = d_{2}$	Assumption $=_{i}$ $=_{e} 2, 3$ $\lor_{i_{1}} 4$ Assumption
2 3 4 5 6 7 8	$c_{1} = c_{2} \lor d_{1} = d_{2}$ $c_{1} = c_{2}$ $f(c_{1}) = f(c_{1})$ $f(c_{1}) = f(c_{2})$ $f(c_{1}) = f(c_{2}) \lor f(d_{1}) = f(d_{2})$ $d_{1} = d_{2}$ $f(d_{1}) = f(d_{1})$	Assumption $=_i$ $=_e 2, 3$ $\lor_{i_1} 4$ Assumption $=_i$

(c)	$\forall x P(x) \land \forall y Q(y) \vdash \forall x (P(x) \land Q(x))$ Solution:	(3p)	
1	$\forall x P(x) \land \forall y Q(y)$		Premise
2	$\forall x P(x)$		$\wedge_{e_1} 1$
3	$\forall y P(y)$		$\wedge_{e_2} 1$
4	x_0		
5	$P(x_0)$		$\forall x_e \ 2$
6	$Q(x_0)$		$\forall y_e \ 3$
7	$P(x_0) \wedge Q(x_0)$		$\wedge_i 5, 6$
8	$\forall x \left(P(x) \land Q(x) \right)$		$\forall x_i \ 4-7$

5. Is the following LTL formula valid, i.e., satisfied on all paths of all transition systems?

$$G(p \lor q) \to G F p \lor G F q \quad (5p)$$

Solution: Yes it is valid. Let π be a path in a model \mathcal{M} such that $\pi \models \operatorname{G}(p \lor q)$. We now have to show that $\pi \models \operatorname{GF} p \lor \operatorname{GF} q$. Assume $\pi \not\models \operatorname{GF} p$ and $\pi \not\models \operatorname{GF} q$ then there are *i* and *j* such that $\pi^i \models \operatorname{G} \neg p$ and $\pi^j \models \operatorname{G} \neg q$, so for all $k \ge max(i, j)$ we have $\pi^k \models \neg p \land \neg q$. But this contradicts that $\pi \models \operatorname{G}(p \lor q)$. Hence $\pi \models \operatorname{GF} p \lor \operatorname{GF} q$.

- 6. Let P and Q be unary predicates. Decide for each of the sequents below whether they are valid or not, i.e., give a proof in natural deduction or a counter-model.
 - (a) $\exists x \neg P(x) \lor \exists x Q(x) \vdash \forall x (P(x) \rightarrow Q(x))$ (3p) Solution: This is not valid, a counter-model \mathcal{M} is given by:
 - $A = \{0, 1\},\$
 - $P^{\mathcal{M}} = \{0\},$
 - $Q^{\mathcal{M}} = \{1\}.$

With an arbitrary look-up table l we have $\mathcal{M} \models_l \exists x \neg P(x) \lor \exists x Q(x)$ as $1 \notin P^{\mathcal{M}}$ (or as $0 \in Q^{\mathcal{M}}$), but $\mathcal{M} \not\models_l \forall x (P(x) \to Q(x))$ as $0 \in P^{\mathcal{M}}$ but $0 \notin Q^{\mathcal{M}}$. So by soundness we get $\exists x \neg P(x) \lor \exists x Q(x) \nvDash \forall x (P(x) \to Q(x))$.

- (b) $\exists x (P(x) \to Q(x)) \vdash \exists x P(x) \to \exists x Q(x)$ (3p) Solution: This is not valid, a counter-model \mathcal{M} is given by:
 - $A = \{0, 1\},\$
 - $P^{\mathcal{M}} = \{0\},\$
 - $Q^{\mathcal{M}} = \emptyset,$

With an arbitrary look-up table l we have $\mathcal{M} \models_l \exists x (P(x) \to Q(x))$ as $1 \notin P^{\mathcal{M}}$ which makes the implication true. But $\mathcal{M} \not\models_l \exists x P(x) \to \exists x Q(x)$ as even though $0 \in P^{\mathcal{M}}, \exists x Q(x)$ is always false as $Q^{\mathcal{M}}$ is empty. So by *soundness* we get $\exists x (P(x) \to Q(x)) \not\vdash \exists x P(x) \to \exists x Q(x)$.

(c) $\forall x (P(x) \to Q(x)) \vdash \exists x P(x) \to \exists x Q(x)$ (3p) Solution: This is valid, proof:

$ _{1} \forall x \left(P(x) \to Q(x) \right) $	Premise
$ 2 \exists x P(x) $	Assumption
$\begin{array}{ c c c c }\hline & & & & \\ & & & & \\ & & & & \\ & & & & $	Assumption
$4 P(x_0) \to Q(x_0)$	$\forall x_e \ 1$
$_{5} Q(x_{0})$	$\rightarrow_e 4,5$
$6 \exists x Q(x)$	$\exists x_i 6$
$_7 \exists x Q(x)$	$\exists x_e \ 2, 3-6$
$ s \exists x P(x) \to \exists x Q(x) $	$\rightarrow_i 2-7$

- 7. Consider the transition system $\mathcal{M} = (S, \rightarrow, L)$ where the states are $S = \{s_0, s_1, s_2, s_3\}$, the transitions are $s_0 \rightarrow s_1, s_0 \rightarrow s_3, s_1 \rightarrow s_1, s_2 \rightarrow s_0, s_2 \rightarrow s_1, s_2 \rightarrow s_2$, and $s_3 \rightarrow s_2$, and the labeling function is given by $L(s_0) = \{r\}$, $L(s_1) = \{p, q\}, L(s_2) = \{r\}, L(s_3) = \{p, r\}.$
 - (a) Which are the states s that satisfy the CTL formula AF p (i.e., where M, s ⊨ AF p)? (2p)
 Solution: s₀, s₁ and s₃. (These must be motivated by analysing the each state separately using the definition of satisfiability for CTL from the book)
 - (b) Do we have $\mathcal{M}, s_2 \models A[r \cup q]$? (2p) Solution: No. The path $\pi = s_2 \rightarrow s_2 \rightarrow s_2 \rightarrow \ldots$ is a counterexample.

- (c) Do we have $\mathcal{M}, s_0 \models \mathrm{EG}(p \to \mathrm{AX} \neg p)$? (2p) Solution: Yes, take the path $\pi = s_0 \to s_3 \to s_2 \to s_2 \to \dots$
- (d) Explain why the LTL formula $\operatorname{FG} \neg r \to \operatorname{FG} p$ is satisfied on every path in \mathcal{M} . (2p) **Solution**: The only state where we have $\neg r$ is s_1 and any path satisfying $\operatorname{FG} \neg r$ must go there at some point *i*. But then it will be stuck there and $\operatorname{G} p$ would hold at *i* and hence does $\operatorname{FG} p$ holds on any path satisfying $\operatorname{FG} \neg r$.
- 8. We consider the language with one binary predicate symbol R and a unary function symbol f. Consider the formulas:

$$\begin{split} \varphi_1 &= \forall x \, R(x, f(x)), \\ \varphi_2 &= \forall x \, \forall y \, \forall z \, (R(x, y) \land R(y, z) \to R(x, z)), \\ \varphi_3 &= \forall x \, \neg R(x, x). \end{split}$$

- (a) Give a model in which $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$ is true. (3p) Solution: Define \mathcal{M} by:
 - $A = \mathbb{N},$
 - $R^{\mathcal{M}} = \{(x, y) \mid x < y\},$
 - $f^{\mathcal{M}}(x) = x + 1$,
 - *l* arbitrary as all formulas are closed.

This gives that:

- i. $\mathcal{M} \models_l \varphi_1$ as for all $a \in \mathbb{N}$ we have a < a + 1.
- ii. $\mathcal{M} \models_l \varphi_2$ as < is transitive.
- iii. $\mathcal{M} \models_l \varphi_3$ as < is irreflexive.
- (b) Show that $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$ cannot have a finite model. (5p) **Solution**: Let \mathcal{M} be a model of $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$. Since the domain is nonempty there is an $a \in A$. Since $\mathcal{M} \models \varphi_1$ we get $(a, g(a)) \in R^{\mathcal{M}}$, $(g(a), g^2(a)) \in R^{\mathcal{M}}, \ldots, (g^n(a), g^{n+1}(a)) \in R^{\mathcal{M}}, \ldots$ where $g \stackrel{def}{=} f^{\mathcal{M}}$. Assume that there exists $n < m, n, m \in \mathbb{N}$ such that $g^n(a) = g^m(a)$. Since $R^{\mathcal{M}}$ is transitive (since $\mathcal{M} \models \varphi_2$) and $(g^n(a), g^{n+1}(a)) \in R^{\mathcal{M}}$, $(g^{n+1}(a), g^{n+2}(a)) \in R^{\mathcal{M}}$ we get $(g^n(a), g^{n+2}(a)) \in R^{\mathcal{M}}$. Continuing this way we get $(g^n(a), g^m(a)) \in R^{\mathcal{M}}$. But this contradicts $\mathcal{M} \models \varphi_3$. Hence all the $g^n(a), n \in \mathbb{N}$ are distinct and \mathcal{M} must have infinitely many elements.
- 9. A set of connectives is called *adequate* if for every formula of propositional logic there is an equivalent formula using only connectives from this set.

Explain why $\{\wedge, \lor\}$ is *not* an adequate set of connectives. (4p) **Solution**: It is not possible to express \neg using only \land , \lor and propositional atoms as any combination of these will be true in a valuation assigning true to all of the involved atoms. But for \neg the value is false when the involved atom is true.

Alternative solution: It is not possible to express \rightarrow using only \land , \lor and propositional atoms as any combination of these will be false in a valuation assigning false to all of the involved atoms. But for \rightarrow the value is true when the involved atoms are all false.

Good Luck!

Anders, Jan, and Simon