Inst.: Data- och informationsteknik
Kursnamn: Logic in Computer Science
Examinator: Jan Smith
Kurs: DIT201/DAT060
Datum: 2012-10-25 No help documents
Telefonvakt: akn. 1034, 5410
All answers and solutions must be carefully motivated!
total 60 ; $\geq 28: 3, \geq 38: 4, \geq 50$: 5
total $60 ; \geq 28: \mathrm{G}, \geq 42$: VG

All answers must be carefully motivated.

1. We consider the following language: we have one binary predicate symbol R and one constant c.
(a) Define what a model of this language is. (3p)

Solution: A model \mathcal{M} for this language is:
i. A nonempty set A,
ii. a set $R^{\mathcal{M}} \subseteq A^{2}$,
iii. and a constant element $c^{\mathcal{M}} \in A$.
(b) Give an example of a formula in this language which does not hold in all models. (2p)
Solution: The formula $\varphi=R(c, c)$ does not hold in the model \mathcal{M} given by:
i. $A=\{0,1\}$,
ii. $R^{\mathcal{M}}=\{(0,0)\}$,
iii. $c^{\mathcal{M}}=1$.

With this model and an arbitrary look-up table l we get $\mathcal{M} \not \vDash_{l} \varphi$ as $(1,1) \notin R^{\mathcal{M}}$.
2. Give proofs in natural deduction of the following sequents:
(a) $\vdash(\neg p \rightarrow p) \rightarrow \neg \neg p \quad$ (3p)

Solution:

${ }^{1}$	$\neg p \rightarrow p$	Assumption
${ }_{2}$	$\neg p$	Assumption
3	p	$\rightarrow_{e} 1,2$
4	\perp	$\neg_{e} 3,2$
5	$\neg \neg p$	$\neg_{i} 2-4$
6	$(\neg p \rightarrow p) \rightarrow \neg \neg p$	$\rightarrow_{i} 1-5$

(b) $\vdash(p \rightarrow q) \vee(q \rightarrow r) \quad(3 \mathrm{p})$

Solution:

	$q \vee \neg q$	LEM
${ }^{2}$	q	Assumption
3	p	Assumption
4	q	copy 2
5	$p \rightarrow q$	$\rightarrow_{i} 3-4$
6	$(p \rightarrow q) \vee(q \rightarrow r)$	$\vee_{i_{1}} 5$

7	$\neg q$	Assumption
8	q	Assumption
9	\perp	$\neg_{e} 8,7$
10	r	$\perp_{e} 9$
11	$q \rightarrow r$	$\rightarrow_{i} 8-10$
12	$(p \rightarrow q) \vee(q \rightarrow r)$	$\vee_{i_{2}} 11$
13	$(p \rightarrow q) \vee(q \rightarrow r)$	$\vee_{e} 1,2-6,7-12$

(c) $\neg p \rightarrow q, r \rightarrow p \vdash \neg q \vee r \rightarrow p$
(3p)

Solution:

1	$\neg p \rightarrow q$	Premise
$=$	$r \rightarrow p$	Premise

3	$\neg q \vee r$	Assumption
4	$\neg q$	Assumption
5	$\neg \neg p$	$M T 1,4$
6	p	$\neg \neg_{e} 5$
7	r	Assumption
8	p	$\rightarrow_{e} 2,7$
9	p	$\vee_{e} 3,4-6,7-8$
${ }_{10}$	$\neg q \vee r \rightarrow p$	$\rightarrow_{i} 3-9$

3. Compute a conjunctive normal form (CNF) of the formula:

$$
\begin{equation*}
\neg(r \rightarrow p \vee q) \vee(\neg p \rightarrow q \wedge \neg r) \tag{3p}
\end{equation*}
$$

Solution: A CNF of the formula is:

$$
(p \vee \neg q \vee \neg r) \wedge(p \vee q \vee r)
$$

4. Give proofs in natural deduction of the following sequents:
(a) $\forall x \forall y(P(y) \rightarrow Q(x)) \vdash \exists y P(y) \rightarrow \forall x Q(x)$

Solution:

${ }^{1}$	$\forall x \forall y(P(y) \rightarrow Q(x))$
${ }^{2}$	$\exists y P(y)$
${ }^{3}$	x_{0}
4	$\forall y\left(P(y) \rightarrow Q\left(x_{0}\right)\right)$
5	$y_{0} P\left(y_{0}\right)$
6	$P\left(y_{0}\right) \rightarrow Q\left(x_{0}\right)$
7	$Q\left(x_{0}\right)$
8	$Q\left(x_{0}\right)$
9	$\forall x Q(x)$
10	$\exists y P(y) \rightarrow \forall x Q(x)$

(b) $c_{1}=c_{2} \vee d_{1}=d_{2} \vdash f\left(c_{1}\right)=f\left(c_{2}\right) \vee f\left(d_{1}\right)=f\left(d_{2}\right)$

Solution:
${ }_{1} c_{1}=c_{2} \vee d_{1}=d_{2} \quad$ Premise

${ }_{2}$	$c_{1}=c_{2}$	Assumption
3	$f\left(c_{1}\right)=f\left(c_{1}\right)$	$={ }_{i}$
4	$f\left(c_{1}\right)=f\left(c_{2}\right)$	$={ }_{e} 2,3$
5	$f\left(c_{1}\right)=f\left(c_{2}\right) \vee f\left(d_{1}\right)=f\left(d_{2}\right)$	$\vee_{i_{1} 4}$

6	$d_{1}=d_{2}$	Assumption
7	$f\left(d_{1}\right)=f\left(d_{1}\right)$	$={ }_{i}$
8	$f\left(d_{1}\right)=f\left(d_{2}\right)$	$={ }_{e} 6,7$
9	$f\left(c_{1}\right)=f\left(c_{2}\right) \vee f\left(d_{1}\right)=f\left(d_{2}\right)$	$\vee_{i_{2}} 8$
10	$f\left(c_{1}\right)=f\left(c_{2}\right) \vee f\left(d_{1}\right)=f\left(d_{2}\right)$	$\vee_{e} 1,2-5,6-9$

$$
\begin{equation*}
\text { (c) } \forall x P(x) \wedge \forall y Q(y) \vdash \forall x(P(x) \wedge Q(x)) \tag{3p}
\end{equation*}
$$

Solution:

1	$\forall x P(x) \wedge \forall y Q(y)$
${ }_{2}$	$\forall x P(x)$
${ }_{3}$	$\forall y P(y)$
	$\wedge_{e_{1}} 1$
	$\wedge_{e_{2}} 1$

4	x_{0}	$\forall x_{e} 2$
${ }_{5}$	$P\left(x_{0}\right)$	$\forall y_{e} 3$
6	$Q\left(x_{0}\right)$	$\wedge_{i} 5,6$
7	$P\left(x_{0}\right) \wedge Q\left(x_{0}\right)$	$\forall x_{i} 4-7$
8	$\forall x(P(x) \wedge Q(x))$	

5. Is the following LTL formula valid, i.e., satisfied on all paths of all transition systems?

$$
\begin{equation*}
\mathrm{G}(p \vee q) \rightarrow \mathrm{GF} p \vee \mathrm{GF} q \tag{5p}
\end{equation*}
$$

Solution: Yes it is valid. Let π be a path in a model \mathcal{M} such that $\pi \models \mathrm{G}(p \vee q)$. We now have to show that $\pi \models \mathrm{GF} p \vee \mathrm{GF} q$. Assume $\pi \not \vDash \mathrm{GF} p$ and $\pi \not \vDash \mathrm{GF} q$ then there are i and j such that $\pi^{i} \models G \neg p$ and $\pi^{j} \models G \neg q$, so for all $k \geqslant \max (i, j)$ we have $\pi^{k} \models \neg p \wedge \neg q$. But this contradicts that $\pi \models \mathrm{G}(p \vee q)$. Hence $\pi \models \mathrm{GF} p \vee \mathrm{GF} q$.
6. Let P and Q be unary predicates. Decide for each of the sequents below whether they are valid or not, i.e., give a proof in natural deduction or a counter-model.
(a) $\exists x \neg P(x) \vee \exists x Q(x) \vdash \forall x(P(x) \rightarrow Q(x))$

Solution: This is not valid, a counter-model \mathcal{M} is given by:

- $A=\{0,1\}$,
- $P^{\mathcal{M}}=\{0\}$,
- $Q^{\mathcal{M}}=\{1\}$.

With an arbitrary look-up table l we have $\mathcal{M} \models_{l} \exists x \neg P(x) \vee \exists x Q(x)$ as $1 \notin P^{\mathcal{M}}$ (or as $0 \in Q^{\mathcal{M}}$), but $\mathcal{M} \not \forall_{l} \forall x(P(x) \rightarrow Q(x))$ as $0 \in P^{\mathcal{M}}$ but $0 \notin Q^{\mathcal{M}}$. So by soundness we get $\exists x \neg P(x) \vee \exists x Q(x) \nvdash \forall x(P(x) \rightarrow$ $Q(x))$.
(b) $\exists x(P(x) \rightarrow Q(x)) \vdash \exists x P(x) \rightarrow \exists x Q(x) \quad$ (3p)

Solution: This is not valid, a counter-model \mathcal{M} is given by:

- $A=\{0,1\}$,
- $P^{\mathcal{M}}=\{0\}$,
- $Q^{\mathcal{M}}=\emptyset$,

With an arbitrary look-up table l we have $\mathcal{M} \models_{l} \exists x(P(x) \rightarrow Q(x))$ as $1 \notin P^{\mathcal{M}}$ which makes the implication true. But $\mathcal{M} \not \vDash_{l} \exists x P(x) \rightarrow$ $\exists x Q(x)$ as even though $0 \in P^{\mathcal{M}}, \exists x Q(x)$ is always false as $Q^{\mathcal{M}}$ is empty. So by soundness we get $\exists x(P(x) \rightarrow Q(x)) \nvdash \exists x P(x) \rightarrow$ $\exists x Q(x)$.
(c) $\forall x(P(x) \rightarrow Q(x)) \vdash \exists x P(x) \rightarrow \exists x Q(x)$

Solution: This is valid, proof:

	$\forall x(P(x) \rightarrow Q(x))$	Premise
${ }_{2}$	$\exists x P(x)$	Assumption
3	$x_{0} P\left(x_{0}\right)$	Assumption
4	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall x_{e} 1$
5	$Q\left(x_{0}\right)$	$\rightarrow_{e} 4,5$
6	$\exists x Q(x)$	$\exists x_{i} 6$
7	$\exists x Q(x)$	$\exists x_{e} 2,3-6$
8	$\exists x P(x) \rightarrow \exists x Q(x)$	$\rightarrow_{i} 2-7$

7. Consider the transition system $\mathcal{M}=(S, \rightarrow, L)$ where the states are $S=$ $\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$, the transitions are $s_{0} \rightarrow s_{1}, s_{0} \rightarrow s_{3}, s_{1} \rightarrow s_{1}, s_{2} \rightarrow s_{0}, s_{2} \rightarrow$ $s_{1}, s_{2} \rightarrow s_{2}$, and $s_{3} \rightarrow s_{2}$, and the labeling function is given by $L\left(s_{0}\right)=\{r\}$, $L\left(s_{1}\right)=\{p, q\}, L\left(s_{2}\right)=\{r\}, L\left(s_{3}\right)=\{p, r\}$.
(a) Which are the states s that satisfy the CTL formula $\operatorname{AF} p$ (i.e., where $\mathcal{M}, s \models \mathrm{AF} p)$?
Solution: s_{0}, s_{1} and s_{3}. (These must be motivated by analysing the each state separately using the definition of satisfiability for CTL from the book)
(b) Do we have $\mathcal{M}, s_{2} \models \mathrm{~A}[r \mathrm{U} q]$?

Solution: No. The path $\pi=s_{2} \rightarrow s_{2} \rightarrow s_{2} \rightarrow \ldots$ is a counterexample.
(c) Do we have $\mathcal{M}, s_{0} \models \mathrm{EG}(p \rightarrow \mathrm{AX} \neg p)$?

Solution: Yes, take the path $\pi=s_{0} \rightarrow s_{3} \rightarrow s_{2} \rightarrow s_{2} \rightarrow \ldots$
(d) Explain why the LTL formula $\mathrm{FG} \neg r \rightarrow \mathrm{FG} p$ is satisfied on every path in \mathcal{M}. (2p)
Solution: The only state where we have $\neg r$ is s_{1} and any path satisfying $\mathrm{FG} \neg r$ must go there at some point i. But then it will be stuck there and $\mathrm{G} p$ would hold at i and hence does $\mathrm{F} \mathrm{G} p$ holds on any path satisfying F G $\neg r$.
8. We consider the language with one binary predicate symbol R and a unary function symbol f. Consider the formulas:

$$
\begin{aligned}
& \varphi_{1}=\forall x R(x, f(x)), \\
& \varphi_{2}=\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \rightarrow R(x, z)), \\
& \varphi_{3}=\forall x \neg R(x, x) .
\end{aligned}
$$

(a) Give a model in which $\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$ is true.

Solution: Define \mathcal{M} by:

- $A=\mathbb{N}$,
- $R^{\mathcal{M}}=\{(x, y) \mid x<y\}$,
- $f^{\mathcal{M}}(x)=x+1$,
- l arbitrary as all formulas are closed.

This gives that:
i. $\mathcal{M} \models_{l} \varphi_{1}$ as for all $a \in \mathbb{N}$ we have $a<a+1$.
ii. $\mathcal{M} \models_{l} \varphi_{2}$ as $<$ is transitive.
iii. $\mathcal{M} \models_{l} \varphi_{3}$ as $<$ is irreflexive.
(b) Show that $\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$ cannot have a finite model.

Solution: Let \mathcal{M} be a model of $\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$. Since the domain is nonempty there is an $a \in A$. Since $\mathcal{M} \vDash \varphi_{1}$ we get $(a, g(a)) \in R^{\mathcal{M}}$, $\left(g(a), g^{2}(a)\right) \in R^{\mathcal{M}}, \ldots,\left(g^{n}(a), g^{n+1}(a)\right) \in R^{\mathcal{M}}, \ldots$ where $g \stackrel{\text { def }}{=} f^{\mathcal{M}}$.
Assume that there exists $n<m, n, m \in \mathbb{N}$ such that $g^{n}(a)=g^{m}(a)$. Since $R^{\mathcal{M}}$ is transitive (since $\mathcal{M} \vDash \varphi_{2}$) and $\left(g^{n}(a), g^{n+1}(a)\right) \in R^{\mathcal{M}}$, $\left(g^{n+1}(a), g^{n+2}(a)\right) \in R^{\mathcal{M}}$ we get $\left(g^{n}(a), g^{n+2}(a)\right) \in R^{\mathcal{M}}$. Continuing this way we get $\left(g^{n}(a), g^{m}(a)\right) \in R^{\mathcal{M}}$. But this contradicts $\mathcal{M} \models \varphi_{3}$. Hence all the $g^{n}(a), n \in \mathbb{N}$ are distinct and \mathcal{M} must have infinitely many elements.
9. A set of connectives is called adequate if for every formula of propositional logic there is an equivalent formula using only connectives from this set.

Explain why $\{\wedge, \vee\}$ is not an adequate set of connectives. (4p)
Solution: It is not possible to express \neg using only \wedge, \vee and propositional atoms as any combination of these will be true in a valuation assigning true to all of the involved atoms. But for \neg the value is false when the involved atom is true.

Alternative solution: It is not possible to express \rightarrow using only \wedge, \vee and propositional atoms as any combination of these will be false in a valuation assigning false to all of the involved atoms. But for \rightarrow the value is true when the involved atoms are all false.

Good Luck!

Anders, Jan, and Simon

