Inst.: Data- och Informationsteknik
Kursnamn: Logic in Computer Science
Examinator: Thierry Coquand
Kurs: DIT200/DAT060
Datum: 2012-08-22 No help documents
Telefonvakt: akn. 1030
All answers and solutions must be carefully motivated!
total $30 ; \geq 14: 3, \geq 19: 4, \geq 25: 5$
total $30 ; \geq 14: \mathrm{G}, \geq 21: \mathrm{VG}$

1. Give a proof in natural deduction of
a) $((p \rightarrow q) \wedge(p \rightarrow r)) \rightarrow(p \rightarrow(q \wedge r))(2 \mathrm{p})$
b) $(\exists x \cdot(P(x) \vee Q(x))) \rightarrow((\exists x \cdot P(x)) \vee(\exists x \cdot Q(x)))(2 \mathrm{p})$
c) $(\forall x \cdot \forall y \cdot(S(y) \rightarrow F(x))) \rightarrow((\exists y \cdot S(y)) \rightarrow \forall x \cdot F(x))(2 \mathrm{p})$
2. Say whether these consequences are true or false (if it is true give a proof, and if it is false give a model where it is not valid):
a) $(\exists x \cdot(P(x) \rightarrow Q(x))) \rightarrow((\exists x \cdot P(x)) \rightarrow(\exists y \cdot Q(y)))(2 \mathrm{p})$
b) $[(\forall x \cdot \exists y \cdot R(x, y)) \wedge(\forall y \cdot \exists x \cdot R(x, y))] \rightarrow \forall x \cdot R(x, x)(2 \mathrm{p})$
3. We consider the following language: we have one unary predicate symbol P and one unary function symbol f and one constant a. Define what is a model for this language (2 p). Give an example of a formula in this language, containing an occurence of a, f and P, which holds in some model but not in all models (1p).
4. Compute a CNF for the formula
$(p \rightarrow q) \vee(q \wedge r)(1 \mathrm{p})$
$(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow r)(1 \mathrm{p})$
5. We consider the following CTL model (S, \rightarrow, L) where S has 4 states $s_{0}, s_{1}, s_{2}, s_{3}$ and we have $s_{0} \rightarrow s_{0}, s_{0} \rightarrow s_{1}, s_{0} \rightarrow s_{3}, s_{1} \rightarrow s_{1}, s_{1} \rightarrow$ $s_{2}, s_{2} \rightarrow s_{0}, s_{2} \rightarrow s_{3}, s_{3} \rightarrow s_{0}$ and $L\left(s_{0}\right)=\{a\}, L\left(s_{1}\right)=\{a, c\}, L\left(s_{2}\right)=$ $\{b\}$ and $L\left(s_{3}\right)=\{b, c\}$. What are the states s for which we have?
a) $s=E X(E X c)(1 \mathrm{p})$?
b) $s \vDash A G(E F b)(1 \mathrm{p})$
6. We consider the language with one unary predicate symbol P and one function symbol P and one constant a. We consider the formulae $\phi_{1}=P(a)$ and $\phi_{2}=\forall x .(P(x) \rightarrow P(f(x))$ Explain why we don't have $\phi_{1}, \phi_{2} \vdash \forall x . P(x)(2 \mathrm{p})$. Give a model where we have $\phi_{1} \wedge \phi_{2} \rightarrow \forall x . P(x)$ (2p).

Please turn the page!
7. Is the following LTL formula

$$
F(\varphi) \rightarrow \varphi \vee X(X(F(\varphi)))
$$

valid? Motivate your answer (2p)
8. Is the following entailment valid? (2p)

$$
(p \rightarrow q) \rightarrow r, \neg r \wedge \neg s,(q \rightarrow p) \vee t, t \rightarrow(r \vee p) \vdash t
$$

9. We consider the function $F: X \longmapsto(\{1,3\} \cup X) \cap\{1,4\}$ which takes as argument a subset to $\{1,2,3,4\}$ and return a subset to $\{1,2,3,4\}$. What is the least fixed point of F and the greatest fixed point of F $(2 \mathrm{p})$? Can you give another fixed point of $F(1 \mathrm{p})$?
10. Explain why \rightarrow, \neg is a complete set of connectives (2p).

Good Luck!
Thierry and Jan

