Test Exam

1. We consider the following language: we have one binary relation symbol R, and one unary function symbol f. Define what is a model for this language (2 p). Give an example of a formula in this language which does not hold in all models (1p).
2. Compute a CNF for the following propositional formulae

- $\neg(p \rightarrow(\neg(q \vee(\neg p \rightarrow q))))(1 \mathrm{p})$
- $\neg p \wedge(q \rightarrow p) \wedge(r \rightarrow q)(1 \mathrm{p})$

3. Four men and four women are nominated for two positions. Exactly one man and one woman are elected. The men are A, B, C, D and the women are E, F, G, H. We know:

- if neither A nor E won, then G won
- if neither A nor F won, then B won
- if neither B nor G won, then C won
- if neither C nor F won, then E won

Who were the two people elected (2p)?
4. Show that $\{\vee, \neg\}$ is an adequate set of connectives (2p).
5. What are the models of the following formula (2p)

$$
\forall x \forall y \forall z .(x=y \vee y=z \vee x=z)
$$

6. We consider the language where T is a unary predicate and R a binary predicate. Show that $\phi_{1}, \phi_{2}, \phi_{3} \vdash \perp$ where ϕ_{1} is $\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \rightarrow R(x, z)), \phi_{2}$ is $\forall x \exists y R(x, y)$ and ϕ_{3} is $T(x) \leftrightarrow \forall y(R(x, y) \rightarrow \neg T(y))(3 \mathrm{p})$
7. For the language $\{0, S\}$ we consider the formulae F_{1} which is $\forall x \neg(S(x)=0), F_{2}$ which is $\forall x \forall y(S(x)=S(y) \rightarrow x=y)$ and F_{3} which is $\forall x x=0 \vee \exists y(x=S(y))$. Find a model where we have an element satisfying the formula $u=S(u)$ (2p). Explain why we cannot have $F_{1}, F_{2}, F_{3} \vdash \forall x \neg(S(x)=x)(1 \mathrm{p})$
8. Say which formula is true and which one is false (if it is true give a proof, and if it is false give a model where it is not valid):

- $\exists x(\neg Q(x) \wedge P(x)) \rightarrow \forall x(Q(x) \rightarrow P(x))(1 \mathrm{p})$
- $\forall x(P(x) \rightarrow Q(x) \wedge Q(x) \rightarrow P(x)) \rightarrow(\exists x P(x) \rightarrow \exists x Q(x))(1 \mathrm{p})$
- $(\exists x P(x) \rightarrow \exists x Q(x)) \rightarrow \exists x(P(x) \rightarrow Q(x) \wedge Q(x) \rightarrow P(x))(1 \mathrm{p})$

9. We consider the following CTL model (S, \rightarrow, L) where S has 3 states s_{1}, s_{2}, s_{3} and we have $s_{1} \rightarrow s_{2}, s_{1} \rightarrow s_{3}, s_{2} \rightarrow s_{1}, s_{2} \rightarrow s_{3}, s_{3} \rightarrow s_{3}$, and $L\left(s_{1}\right)=\{a, b\}, L\left(s_{2}\right)=\{b, c\}$ and $L\left(s_{3}\right)=\{c\}$.
Write the beginning of the unwinding tree of this system, the starting state being $s_{1}(1 \mathrm{p})$.
Explain why we have $s_{1} \models A G(c \rightarrow E G c)$ and why we do not have $s_{1} \models A G(E F b)$ (3p).
