Test Exam

- 1. We consider the following language: we have one binary relation symbol R, and one unary function symbol f. Define what is a *model* for this language (2p). Give an example of a formula in this language which does not hold in all models (1p).
- 2. Compute a CNF for the following propositional formulae
 - $\neg(p \rightarrow (\neg(q \lor (\neg p \rightarrow q))))$ (1p)
 - $\neg p \land (q \to p) \land (r \to q)$ (1p)
- 3. Four men and four women are nominated for two positions. Exactly one man and one woman are elected. The men are A, B, C, D and the women are E, F, G, H. We know:
 - if neither A nor E won, then G won
 - if neither A nor F won, then B won
 - if neither B nor G won, then C won
 - if neither C nor F won, then E won

Who were the two people elected (2p)?

- 4. Show that $\{\lor, \neg\}$ is an adequate set of connectives (2p).
- 5. What are the models of the following formula (2p)

$$\forall x \forall y \forall z. (x = y \lor y = z \lor x = z)$$

- 6. We consider the language where T is a unary predicate and R a binary predicate. Show that $\phi_1, \phi_2, \phi_3 \vdash \bot$ where ϕ_1 is $\forall x \forall y \forall z \ (R(x, y) \land R(y, z) \to R(x, z)), \phi_2$ is $\forall x \exists y \ R(x, y)$ and ϕ_3 is $T(x) \leftrightarrow \forall y \ (R(x, y) \to \neg T(y))$ (3p)
- 7. For the language $\{0, S\}$ we consider the formulae F_1 which is $\forall x \neg (S(x) = 0), F_2$ which is $\forall x \forall y \ (S(x) = S(y) \rightarrow x = y)$ and F_3 which is $\forall x \ x = 0 \lor \exists y \ (x = S(y))$. Find a model where we have an element satisfying the formula u = S(u) (2p). Explain why we cannot have $F_1, F_2, F_3 \vdash \forall x \neg (S(x) = x)$ (1p)
- 8. Say which formula is true and which one is false (if it is true give a proof, and if it is false give a model where it is not valid):
 - $\exists x \ (\neg Q(x) \land P(x)) \to \forall x \ (Q(x) \to P(x)) \ (1p)$
 - $\forall x \ (P(x) \to Q(x) \land Q(x) \to P(x)) \to (\exists x \ P(x) \to \exists x \ Q(x)) \ (1p)$
 - $(\exists x \ P(x) \to \exists x \ Q(x)) \to \exists x \ (P(x) \to Q(x) \land Q(x) \to P(x)) \ (1p)$
- 9. We consider the following CTL model (S, \rightarrow, L) where S has 3 states s_1, s_2, s_3 and we have $s_1 \rightarrow s_2, s_1 \rightarrow s_3, s_2 \rightarrow s_1, s_2 \rightarrow s_3, s_3 \rightarrow s_3$, and $L(s_1) = \{a, b\}, L(s_2) = \{b, c\}$ and $L(s_3) = \{c\}$.

Write the beginning of the unwinding tree of this system, the starting state being s_1 (1p). Explain why we have $s_1 \models AG(c \rightarrow EGc)$ and why we do not have $s_1 \models AG(EFb)$ (3p).