DATAVETENSKAP
Göteborgs universitet

Tentamensskrivning i Logic in Computer Science 2007-04-10 EM.
(DIT200/DAT060) 5p
Inga hjälpmedel (engelskt-svenskt lexikon får användas).
Telefonvakt: ankn. 1030, 1034

All answers and solutions must be carefully motivated!

1. Let ψ be the formula

$$
[\forall x \exists y \quad R(x, y)] \rightarrow \exists y \quad R(y, y)
$$

a) Explain why we don't have $\vdash \psi(2 \mathrm{p})$
b) Give a model M for which we have $M \models \psi$ (1p)

Solution: By soundness, it is enough to show to build a model in which ψ is not valid. We can take $M=\mathbb{N}$ and interpet $R(x, y)$ by $x<y$. Then $\forall x \exists y R(x, y)$ is valid in this model but not $\exists y R(y, y)$.
A model which validates ψ is obtained by changing the interpretation $R(x, y)$ to $x=y$.
2. We consider the language with two unary predicate symbol P, Q and a model $M=$ $A, P^{M} \subseteq A, Q^{M} \subseteq A$. Assuming $M \models \forall x(P(x) \vee Q(x))$, show that we must have

$$
M \models \forall x P(x) \vee \exists x Q(x)
$$

by looking at the two cases: $P^{M}=A$ or $P^{M} \neq A(1 \mathrm{p})$.
Explain then why we can conclude from this that we have (1p)

$$
\forall x(P(x) \vee Q(x)) \vdash(\forall x P(x)) \vee(\exists x Q(x))
$$

Solution: If we have $P^{M}=A$ then we have $\forall x P(x)$ valid in M and so $M \models \forall x P(x) \vee$ $\exists x Q(x)$. Otherwise $P^{M} \neq A$. Since we have $M \models \forall x(P(x) \vee Q(x))$ we have $A=P^{M} \cup Q^{M}$ and so $P^{M} \neq A$ implies $Q^{M} \neq \emptyset$. This implies that $\exists x Q(x)$ is valid in M and so $M \models \forall x P(x) \vee \exists x Q(x)$ holds in this case as well.
By completeness we deduce that we have

$$
\forall x(P(x) \vee Q(x)) \vdash(\forall x P(x)) \vee(\exists x Q(x))
$$

3. Compute a CNF for the formula
$(p \wedge q) \vee(q \wedge r) \vee(r \wedge p)(1.5 \mathrm{p})$
$\neg(r \vee(\neg p \rightarrow \neg q))(1.5 \mathrm{p})$
Solution: See textbook, Chapter 1.5
4. Give a proof in natural deduction of
a) $(\neg p \wedge \neg q) \rightarrow \neg(p \vee q)(1.5 \mathrm{p})$
b) $((\forall x P(x)) \vee(\forall x Q(x))) \rightarrow \forall x(P(x) \vee Q(x))(2 \mathrm{p})$
c) $\forall x \forall y \forall z[(R(x, y) \wedge R(z, y)) \rightarrow R(x, z)], \forall x R(x, x) \vdash \forall x \forall y[R(x, y) \rightarrow R(y, x)](2 \mathrm{p})$

Solution: See textbook.
5. Say whether these consequences are true or false (if it is true give a proof, and if it is false give a model where it is not valid):
a) $\exists x[(P(x) \rightarrow Q(x)) \wedge(Q(x) \rightarrow P(x))], \forall x P(x) \vdash \forall x Q(x)(2 \mathrm{p})$
b) $\forall x \forall y \forall z[(R(x, y) \wedge R(z, y)) \rightarrow R(x, z)] \vdash \forall x \forall y[R(x, y) \rightarrow R(y, x)]$ (1.5p)
c) $\forall x \exists y \forall z P(x, y, z) \vdash \forall x \forall z \exists y P(x, y, z)(1 \mathrm{p})$

Solution: The first formula is not valid. We can take $A=\{0,1\}$ and $P^{M}=\{0,1\}$ and $Q^{M}=\{0\}$.
The second formula is not valid. We can take $A=\{0,1\}$ and $R^{M}=\{(0,1),(0,0)\}$.
The last formula is valid. One way to say it is to notice that we have $A(x) \vdash B(x)$ where $A(x)$ is $\exists y \forall z P(x, y, z)$ and $B(x)$ is $\forall z \exists y P(x, y, z)$. Hence $\forall x \cdot A(x) \vdash \forall x \cdot B(x)$ is valid as well.
6. We consider the following CTL model (S, \rightarrow, L) where S has 4 states $s_{0}, s_{1}, s_{2}, s_{3}$ and we have $s_{0} \rightarrow s_{1}, s_{0} \rightarrow s_{3}, s_{1} \rightarrow s_{1}, s_{1} \rightarrow s_{2}, s_{2} \rightarrow s_{0}, s_{2} \rightarrow s_{3}, s_{3} \rightarrow s_{0}$ and $L\left(s_{0}\right)=$ $\{a\}, L\left(s_{1}\right)=\{c\}, L\left(s_{2}\right)=\{b\}$ and $L\left(s_{3}\right)=\{b, c\}$. What are the states s for which we have?
a) $s \models E X(E X c)(1.5 \mathrm{p})$?
b) $s \models A G(E F b)(1.5 \mathrm{p})$

Solution: In both cases the formulae are valid for all states.
7. Is the following LTL formula

$$
G(p \vee q) \rightarrow(F G p \vee G F q)
$$

valid? Explain why (2p)
Solution: This formula is valid. Let σ be a trace. We have at all times n that $\sigma^{n} \vDash p$ or $\sigma^{n} \models q$. If $G F q$ is not valid this means that there is N such that $\sigma^{n} \models \neg q$ for all $n \geqslant N$. But we have then $\sigma^{n} \models p$ for all $n \geqslant N$ and hence $\sigma \models F G p$.
8. Given the atomic formulae p_{1}, \ldots, p_{n} we define the formulae $C=p_{1} \wedge \ldots \wedge p_{n}$ and $D=$ $p_{1} \vee \ldots \vee p_{n}$. Explain why the following equivalence is valid (2p)

$$
(D \rightarrow C) \quad \leftrightarrow \quad\left(p_{1} \rightarrow p_{2}\right) \wedge\left(p_{2} \rightarrow p_{3}\right) \wedge \ldots \wedge\left(p_{n-1} \rightarrow p_{n}\right) \wedge\left(p_{n} \rightarrow p_{1}\right)
$$

Solution: Write $p_{n+1}=p_{1}, p_{n+2}=p_{2}, \ldots$
Assume $D \rightarrow C$. Since $p_{i} \rightarrow D$ and $C \rightarrow p_{i+1}$ hold we have then $p_{i} \rightarrow p_{i+1}$ for all i.
Assume that we have $p_{i} \rightarrow p_{i+1}$ for all i. Then by induction we have $p_{i} \rightarrow p_{i+k}$ for all k and hence $p_{i} \rightarrow p_{j}$ for all i, j. This shows that we have $p_{i} \rightarrow C$ for all i and hence $D \rightarrow C$.

