Tentamensskrivning i **Logic in Computer Science** 2007-04-10 EM. (DIT200/DAT060) 5p Inga hjälpmedel (engelskt-svenskt lexikon får användas). Telefonvakt: ankn. 1030, 1034

All answers and solutions must be carefully motivated!

1. Let ψ be the formula

 $[\forall x \exists y \ R(x,y)] \to \exists y \ R(y,y)$

- a) Explain why we don't have $\vdash \psi$ (2p)
- **b)** Give a model M for which we have $M \models \psi$ (1p)

Solution: By *soundness*, it is enough to show to build a model in which ψ is not valid. We can take $M = \mathbb{N}$ and interpet R(x, y) by x < y. Then $\forall x \exists y \ R(x, y)$ is valid in this model but not $\exists y \ R(y, y)$.

A model which validates ψ is obtained by changing the interpretation R(x, y) to x = y.

2. We consider the language with two unary predicate symbol P, Q and a model $M = A, P^M \subseteq A, Q^M \subseteq A$. Assuming $M \models \forall x \ (P(x) \lor Q(x))$, show that we must have

$$M \models \forall x \ P(x) \lor \exists x \ Q(x)$$

by looking at the two cases: $P^M = A$ or $P^M \neq A$ (1p).

Explain then why we can conclude from this that we have (1p)

$$\forall x \ (P(x) \lor Q(x)) \vdash (\forall x \ P(x)) \lor (\exists x \ Q(x))$$

Solution: If we have $P^M = A$ then we have $\forall x \ P(x)$ valid in M and so $M \models \forall x \ P(x) \lor \exists x \ Q(x)$. Otherwise $P^M \neq A$. Since we have $M \models \forall x \ (P(x) \lor Q(x))$ we have $A = P^M \cup Q^M$ and so $P^M \neq A$ implies $Q^M \neq \emptyset$. This implies that $\exists x \ Q(x)$ is valid in M and so $M \models \forall x \ P(x) \lor \exists x \ Q(x)$ holds in this case as well.

By *completeness* we deduce that we have

$$\forall x \ (P(x) \lor Q(x)) \vdash (\forall x \ P(x)) \lor (\exists x \ Q(x))$$

- 3. Compute a CNF for the formula
 - $(p \land q) \lor (q \land r) \lor (r \land p)$ (1.5p) $\neg (r \lor (\neg p \to \neg q))$ (1.5p) Solution: See textbook, Chapter 1.5
- 4. Give a proof in natural deduction of
 - a) $(\neg p \land \neg q) \rightarrow \neg (p \lor q)$ (1.5p)
 - **b)** $((\forall x \ P(x)) \lor (\forall x \ Q(x))) \to \forall x \ (P(x) \lor Q(x)) \ (2p)$
 - $\mathbf{c)} \ \forall x \forall y \forall z \ [(R(x,y) \land R(z,y)) \to R(x,z)], \forall x \ R(x,x) \vdash \forall x \forall y \ [R(x,y) \to R(y,x)] \ (2\mathbf{p})$

Solution: See textbook.

- 5. Say whether these consequences are true or false (if it is true give a proof, and if it is false give a model where it is not valid):
 - **a)** $\exists x \ [(P(x) \to Q(x)) \land (Q(x) \to P(x))], \forall x \ P(x) \vdash \forall x \ Q(x) \ (2p)$
 - **b)** $\forall x \forall y \forall z [(R(x,y) \land R(z,y)) \rightarrow R(x,z)] \vdash \forall x \forall y [R(x,y) \rightarrow R(y,x)] (1.5p)$
 - c) $\forall x \exists y \forall z \ P(x, y, z) \vdash \forall x \forall z \exists y \ P(x, y, z) \ (1p)$

Solution: The first formula is not valid. We can take $A = \{0, 1\}$ and $P^M = \{0, 1\}$ and $Q^M = \{0\}$.

The second formula is not valid. We can take $A = \{0, 1\}$ and $R^M = \{(0, 1), (0, 0)\}$.

The last formula is valid. One way to say it is to notice that we have $A(x) \vdash B(x)$ where A(x) is $\exists y \forall z \ P(x, y, z)$ and B(x) is $\forall z \exists y \ P(x, y, z)$. Hence $\forall x.A(x) \vdash \forall x.B(x)$ is valid as well.

6. We consider the following CTL model (S, \rightarrow, L) where S has 4 states s_0, s_1, s_2, s_3 and we have $s_0 \rightarrow s_1, s_0 \rightarrow s_3, s_1 \rightarrow s_1, s_1 \rightarrow s_2, s_2 \rightarrow s_0, s_2 \rightarrow s_3, s_3 \rightarrow s_0$ and $L(s_0) = \{a\}, L(s_1) = \{c\}, L(s_2) = \{b\}$ and $L(s_3) = \{b, c\}$. What are the states s for which we have?

a) $s \models EX (EX c) (1.5p)?$

b) $s \models AG (EF b) (1.5p)$

Solution: In both cases the formulae are valid for *all* states.

7. Is the following LTL formula

$$G (p \lor q) \to (FG \ p \lor GF \ q)$$

valid? Explain why (2p)

Solution: This formula is valid. Let σ be a trace. We have at all times n that $\sigma^n \models p$ or $\sigma^n \models q$. If GF q is not valid this means that there is N such that $\sigma^n \models \neg q$ for all $n \ge N$. But we have then $\sigma^n \models p$ for all $n \ge N$ and hence $\sigma \models FG p$.

8. Given the atomic formulae p_1, \ldots, p_n we define the formulae $C = p_1 \land \ldots \land p_n$ and $D = p_1 \lor \ldots \lor p_n$. Explain why the following equivalence is valid (2p)

$$(D \to C) \quad \leftrightarrow \quad (p_1 \to p_2) \land (p_2 \to p_3) \land \ldots \land (p_{n-1} \to p_n) \land (p_n \to p_1)$$

Solution: Write $p_{n+1} = p_1, p_{n+2} = p_2, ...$

Assume $D \to C$. Since $p_i \to D$ and $C \to p_{i+1}$ hold we have then $p_i \to p_{i+1}$ for all i.

Assume that we have $p_i \to p_{i+1}$ for all *i*. Then by induction we have $p_i \to p_{i+k}$ for all *k* and hence $p_i \to p_j$ for all *i*, *j*. This shows that we have $p_i \to C$ for all *i* and hence $D \to C$.